Have a personal or library account? Click to login
Some remarks on a fractional integro-differential inclusion with boundary conditions Cover

Some remarks on a fractional integro-differential inclusion with boundary conditions

By: Aurelian Cernea  
Open Access
|Apr 2017

References

  1. [1] Aghajani, A., Jalilian, Y., Trujillo, J.J., On the existence of solutions of fractional integro-differential equations, Fract. Calc. Appl. Anal. 15 (2012), 44-69.10.2478/s13540-012-0005-4
  2. [2] Ahmad, B., Nieto, J.J., Pimentel, J., Some boundary value problems of fractional differential equations and inclusions, Computers and Mathematics with Applications 62 (2011), 1238-1250.10.1016/j.camwa.2011.02.035
  3. [3] Ahmad, B., Ntouyas, S.K., Existence results for nonlocal boundary value problems of fractional differential equations and inclusions with strip conditions, Boundary Value Problems 55 (2012), 1-21.
  4. [4] Ahmad, B., Ntouyas, S.K., Existence of solutions for fractional differential inclusions with four-point nonlocal Riemann-Liouville type integral boundary conditions, Filomat 27 (2013), 1027-1036.10.2298/FIL1306027A
  5. [5] Aubin, J.P., Cellina, A., Differential Inclusions, Springer, Berlin, 1984.10.1007/978-3-642-69512-4
  6. [6] Caputo, M., Elasticità e Dissipazione, Zanichelli, Bologna, 1969.
  7. [7] Cernea, A., A note on the existence of solutions for some boundary value problems of fractional differential inclusions, Fract. Calc. Appl. Anal. 15 (2012), 183-194.10.2478/s13540-012-0013-4
  8. [8] Cernea, A., On a fractional differential inclusion with strip boundary conditions, J. Fract. Calc. Appl. 4 (2013), 169-176.
  9. [9] Cernea, A., On a fractional differential inclusion with nonlocal Riemann-Liouville type integral boundary conditions, Libertas Math. 33 (2013), 37-46.
  10. [10] Chalishajar, D.N., Karthikeyan, K., Existence and uniqueness results for boundary value problems of higher order fractional integro-differential equations involving Gronwall’s inequality in Banach spaces, Acta Math. Scientia 33B (2013), 758-772.10.1016/S0252-9602(13)60036-3
  11. [11] Filippov, A.F., Classical solutions of differential equations with multivalued right hand side, SIAM J. Control 5 (1967), 609-621.10.1137/0305040
  12. [12] Karthikeyan, K., Trujillo, J.J., Existence and uniqueness results for fractional integro-differential equations with boundary value conditions, Commun Nonlinear Sci. Numer. Simulat. 17 (2012), 4037-4043.10.1016/j.cnsns.2011.11.036
  13. [13] Kilbas, A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  14. [14] Marin, M., Florea, O., On temporal behavior of solutions in Thermoelasticity of porous micropolar bodies, An. Şt. Univ. Ovidius Constanţa 22 (2014), 169-188.
  15. [15] Miller, K., Ross, B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
  16. [16] Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999.
  17. [17] Sharma, K., Marin, M., Reflection and transmision of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids, An. Şt. Univ. Ovidius Constanţa 22 (2014), 151-175.
  18. [18] Wang, J.R., Wei, W., Yang, Y., Fractional nonlocal integro-differential equations of mixed type with time varying generating operators and optimal control, Opuscula Math. 30 (2010), 361-381.10.7494/OpMath.2010.30.3.361
DOI: https://doi.org/10.1515/auom-2015-0006 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 73 - 82
Submitted on: Apr 20, 2014
Accepted on: Jun 30, 2014
Published on: Apr 4, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Aurelian Cernea, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.