Have a personal or library account? Click to login
Generalized almost paracontact structures Cover

References

  1. [1] M. Abouzaid, M. Boyarchenko, Local structure of generalized complex manifolds, 2006, J. Sympl. Geom., 4 (1), 2006, 43–62.10.4310/JSG.2006.v4.n1.a2
  2. [2] H. Bursztyn, G. R. Cavalcanti, M. Gualtieri, Generalized Kähler and hyper-Kähler quotients, 2007, arXiv:math/0702104v1.10.1090/conm/450/08734
  3. [3] H. Bursztyn, G. R. Cavalcanti, M. Gualtieri, Reduction of Courant algebroids and generalized complex structures, Adv. Math., 211 (2), 2007, 726–765.10.1016/j.aim.2006.09.008
  4. [4] M. Crainic, Generalized complex structures and Lie brackets, arXiv:math/0412097v2, 2004.10.4310/JSG.2004.v2.n4.a3
  5. [5] M. Gualtieri, Generalized complex geometry, PhD Thesis, 2004, arXiv:math/0401221v1.
  6. [6] N. Hitchin, Lectures on special Lagrangian submanifolds, Studies in Advanced Mathematics, 23, Americal Mathematical Society, Providence, 2001.
  7. [7] N. Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math., 54, 2003, 281–308.10.1093/qmath/hag025
  8. [8] N. Houston, Supergravity and Generalised Geometry, Theoretical Physics Department, Imperial College London, 2010.
  9. [9] L. Ornea, R. Pantilie, On holomorphic maps and Generalized Complex Geometry, J. Geom. Phys., 61, 2011, 1502–1515.10.1016/j.geomphys.2011.03.017
  10. [10] L. Ornea, R. Pantilie, On the local structure of generalized Kähler manifolds, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 52 (100), no. 3, 2009, 347–353.
  11. [11] L.-I. Piscoran, C. Barbu, Remarks on a new metric in the unity disc of the complex plane., Carpathian J. Math. Vol. 30, No. 2 (2014). To appear.10.37193/CJM.2014.02.04
  12. [12] Y. S. Poon, A. Wade, Generalized Contact Structures, 2009, arXiv:math/0912.5314v1.
  13. [13] B. Şahin, F. Şahin, Generalized almost para-contact manifolds, available to arXiv:1401.5304v1. math. GT.
  14. [14] I. Sato, On a structure similar to almost contact structure, Tensor N. S., 30, 1976, 219–224.
  15. [15] M. Ursu, M. Juras, Notes on topological rings, Carpathian J. Math., Vol. 29, No. 2 (2013), 267–273.10.37193/CJM.2013.02.02
  16. [16] I. Vaisman, From generalized Kaehler to generalized Sasakian structures, Journal of Geometry and Symmetry in Physics, 18, 2010, 63–86.
  17. [17] R. Zucchini, A sigma model field theoretic realization of Hitchin’s generalized complex geometry, J. High Energy Phys., no. 11, 2005.10.1088/1126-6708/2004/11/045
DOI: https://doi.org/10.1515/auom-2015-0004 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 53 - 64
Submitted on: Apr 25, 2014
Accepted on: Jun 29, 2014
Published on: Apr 4, 2017
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2017 Adara M. Blaga, Cristian Ida, published by Ovidius University of Constanta
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.