References
- BENDER, C. M. – ORSZAG, S. A. 1978. Advanced Mathematical Methods for Scientists and Engineers. New York : Mc Graw Hill.
- CAI, J. M. – FANG, H. – FUSHENG, Y. 2006. Nonisothermal nth-order DAEM equation and its parametric study – Use in the kinetic analysis of biomass pyrolysis. In Journal of Mathematical Chemistry, vol. 42, no. 4, pp. 949–956.
- CAI, J. M. – LIU, R. H. 2007. Parametric study of the nonisothermal nth order distributed activation energy model involved the Weibull distribution for biomass pyrolysis. In Journal of Thermal Analysis and Calorimetry, vol. 89, no. 3, pp. 971–975.
- DHAUNDIYAL, A. – SINGH, S. B. 2016a. Distributed activation energy modelling for pyrolysis of forest waste using Gaussian distribution. In Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, Applied Sciences, vol. 70, no. 1, pp. 64–70.
- DHAUNDIYAL, A. – SINGH, S. B. 2016b. Asymptotic approximations to the distributed activation energy model for non isothermal pyrolysis of loose biomass using the Weibull distribution. In Archivum Combustionis, vol. 36, no. 2, pp. 131–146.
- DHAUNDIYAL, A – SINGH, S. B. 2017. Parametric study of nth order distributed activation energy model for isothermal pyrolysis of forest waste using Gaussian distribution. In Acta Technologica Agriculturae, vol. 20, no. 1, pp. 23–28.
- DHAUNDIYAL, A. – TEWARI, P. C. 2017. Kinetic parameters for the thermal decomposition of forest waste using distributed activation energy model (DAEM). In Environmental and Climate Technologies, vol. 19, pp. 15–32.
- DONSKOI, E. – MCELWAIN, D. L. S. 1999. Approximate modelling of coal pyrolysis. In Fuel, vol. 78, no. 7, pp. 825–835.10.1016/S0016-2361(98)00204-X
- HOWARD, J. B. 1981. Chapter 12. Fundamentals of coal pyrolysis and hydropyrolysis. In Chemistry of Coal Utilization. New York : John Wiley and Sons, pp. 665–784. ISBN 0471077267.
- LAKSHMANAN, C. C. – WHITE, N. 1994. A new distributed activation energy model using Weibull distribution for the representation of complex kinetics. In Energy & Fuels, vol. 8, no. 6, pp. 1158–1167.10.1021/ef00048a001
- NIKSA, S. – LAU, C. W. 1993. Global rates of devolatilization for various coal types. In Combustion abd Flame, vol. 94, no. 3, pp. 293–307.
- PITT, G. J. 1962. The kinetics of the evolution of volatile products from coal. In Fuel, vol. 41, no. 1, pp. 267–274.
- SUUBERG, E. M. 1983. Approximate solution technique for nonisothermal, Gaussian distributed activation energy models. In Combustion and Flame, vol. 50, pp. 243–245.10.1016/0010-2180(83)90066-4
- TENG, H. – HSIEH, C. T. 1999. Influence of surface characteristics on liquid-phase adsorption of phenol by activated carbons prepared from bituminous coal. In Industrial and Engineering Chemistry Research, vol. 37, no. 9, pp. 3618–3624.
- VAND, A. 1943. Theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. In Proceedings of Physics Society of London A, vol. 55, pp. 222–246.