Have a personal or library account? Click to login
Upon the opportunity to apply ART2 Neural Network for clusterization of biodiesel fuels Cover

Upon the opportunity to apply ART2 Neural Network for clusterization of biodiesel fuels

Open Access
|Mar 2016

References

  1. [1]. Hagan, M.; Demuth, H.; Beale, M., Neural Network Design, Boston, MA: PWS Publishing, 1996.
  2. [2]. Rocabruno-Valdez, C.I.; Hernandez, J.A., Artificial neural network models to predict density, dynamic viscosity and cetane number of biodiesel, Fuel, 2015, 147, 9-17.
  3. [3]. Pandey, M.; Pandey, А. K., Application of chemometric analysis and Self Organizing Map-ANN source receptor modeling for metal speciation in river sediment, Environmental Pollution, 2015, 204, 64-73.
  4. [4]. Oonk, S.; Spifker, J., А supervised machine-learning approach towards geochemical predictive modelling in archaeology, Journal of archaeological science, 2015, 59, 80-88,.10.1016/j.jas.2015.04.002
  5. [5]. Haykin, S., Neural Networks: A Comprehensive Foundation, NY: Macmillan, 1994.
  6. [6]. Adam, A.; Ibrahim, Z., A two-step supervised learning ANN for imbalanced dataset problems, International Journal of Innovative Computing, 2012, 8.
  7. [7]. Rojas, R., Unsupervised learning and Clustering algorithms, Springer, 1996, 109-131.10.1007/978-3-642-61068-4_5
  8. [8]. Ramos, M.J.; Fernandez, C.M.; Casas, A.; Rodriguez, L.; Perez, A., Influence of fatty acid composition of raw materials on biodiesel properties, Bioresource Technology, 2009, 100, 261-268.
  9. [9]. Moser, B.R.; Vaughn, S.F., Efficacy of fatty acid profile as a tool for screening feedstocks for biodiesel production, Biomass and bioenergy, 2012, 37,31-41.
  10. [10]. Brodnjak-Voncina, D.; Kodba, Z.C.; Novic, M., Multivariate data analysis in classification of vegetable oils characterized by the content of fatty acids, Chemom. Intell. Lab. Syst., 2005, 75, 31-43.
  11. [11]. Giakoumis, E.G., A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation, Renewable Energy, 2013, 50, 858-878.10.1016/j.renene.2012.07.040
  12. [12]. EN 14214:2008 + A1, Automotive fuels - FAME for diesel engines - Requirements and test methods.
  13. [13]. Mustafa, Z.; Surchev, S.; Milina, R.; Sotirov, S., A contribution to the recognition of biodiesel fuels according to their FAME profiles by the ANN, Petroleum & Coal, 2015, 57(1,) 40-47.
  14. [14]. Grossberg, G. A. Carpenter ART2: Self-organization of stable category recognition codes of analog input patterns, Boston University, Center for Adaptive systems, 1987, 23, 4919-30.10.1364/AO.26.00491920523470
  15. [15]. Fausett, L., Fundamentals of Neural Networks; Architecture algorithms and applications, 1993.
DOI: https://doi.org/10.1515/asn-2016-0003 | Journal eISSN: 2603-347X | Journal ISSN: 2367-5144
Language: English
Page range: 19 - 25
Submitted on: Oct 30, 2015
Accepted on: Mar 11, 2016
Published on: Mar 26, 2016
Published by: Konstantin Preslavski University of Shumen
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2016 T. Petkov, Z. Mustafa, S. Sotirov, R. Milina, M. Moskovkina, published by Konstantin Preslavski University of Shumen
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.