Have a personal or library account? Click to login
Effect of flaw inclination angle and crack arrest holes on mechanical behavior and failure mechanism of pre-cracked granite under uniaxial compression Cover

Effect of flaw inclination angle and crack arrest holes on mechanical behavior and failure mechanism of pre-cracked granite under uniaxial compression

Open Access
|Jun 2025

References

  1. Hong QY, Lai HP, Liu YY. Failure analysis and treatments of collapse accidents in loess tunnels. Eng Fail Anal. 2023;145:107037–50.
  2. Zhao LH, Yu CH, Cheng X, Zuo S, Jiao KF. A method for seismic stability analysis of jointed rock slopes using Barton-Bandis failure criterion. Int J Rock Mech Min Sci. 2020;136:104487–99.
  3. Zhao ZH, Chen SC, Zhang JT, Chen JY, Wu Y. In-situ tracer test in fractured rocks for nuclear waste repository. Earth-Sci Rev. 2024;250:104683–712.
  4. Zhao XY, Dong W, Li SS. Investigation on the fatigue crack propagation of rock-concrete interface under fatigue loading below the initial cracking load. Eng Struct. 2024;315:118407–22.
  5. Yue ZF, Meng FZ, Li MZ, Han JH, Wang W, Wang FL, et al. Influence of crack aperture and orientation on the uniaxial compressive behavior of rock. Eur J Env Civ Eng. 2024;28:1–24.
  6. Tan T, Zhang CY, Dai BB, Zhao K. Damage and failure characteristics of single fractured cyan sandstone subjected to freeze–thaw cycles under uniaxial compression. Theor Appl Fract Mech. 2024;130:104272–86.
  7. Sun XC, Li W, Zhang C, Zhang GB, Xia ZG. Mechanical behaviors and fracture characteristics of sandstone combinations with different pre-crack Angles. KSCE J Civ Eng. 2023;27:5388–400.
  8. Tan T, Zhang CY, Li WR, Zhao EC. Evolution of freeze–thaw damage characteristics and corresponding models of intact and fractured rocks under uniaxial compression. Rock Mech Rock Eng. 10.1007/s00603–024–03996–2. Epub ahead of print 11 June 2024.
  9. Xi X, Wu X, Guo QF, Cai MF. Experimental investigation and numerical simulation on the crack initiation and propagation of rock with pre-existing cracks. IEEE Access. 2020;8:129636–44.
  10. Shi H, Zhang HQ, Song L, Yang Z, Yuan GT, Xue XR, et al. Failure characteristics of sandstone specimens with randomly distributed pre-cracks under uniaxial compression. Env Earth Sci. 2020;79:193.
  11. Yang SQ, Yang DS, Jing HW, Li YH, Wang SY. An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures. Rock Mech Rock Eng. 2011;45:563–82.
  12. Shen QQ, Rao QH, Zhang Q, Li Z, Sun DL, Yi W. A new method for predicting double-crack propagation trajectories of brittle rock. Int J Appl Mech. 2021;13:2150026.
  13. Park CH, Bobet A. Crack Initiation, Propagation and coalescence from frictional flaws in uniaxial compression. Eng Fract Mech. 2010;77:2727–48.
  14. Lu YC, Yang FP, Chen T, Gong H. The sretardation effect of combined application of stop-hole and overload on sheet steel. Int J Fatigue. 2020;132:105414–24.
  15. Ishikawa T, Kiyokawa S, Nakatsuji W. Reduction of stress concentration at stop-hole by bolting a crack. Int J Steel Struct. 2020;20:2076–85.
  16. Razavi N, Ayatollahi MR, Sommitsch C, Moser C. Retardation of fatigue crack growth in high strength steel S690 using a modified stop-hole technique. Eng Fract Mech. 2017;169:226–37.
  17. Hu Y, Song MJ, Liu JM, Lei M. Effects of stop hole on crack turning, residual fatigue life and crack tip stress field. J Braz Soc Mech Sci Eng. 2020;42:216–29.
  18. Fu ZQ, Ji BH, Xie SH, Liu TJ. Crack stop holes in steel bridge decks: Drilling method and effects. J Cent South Univ. 2017;24:2372–81.
  19. Yao Y, Ji BH, Fu ZQ, Zhou J, Wang YX. Optimization of stop-hole parameters for cracks at diaphragm-to-rib weld in steel bridges. J Constr Steel Res. 2019;162:105747–61.
  20. Deng QM, Yin XC, Wang DG, Abdel Wahab M. Numerical analysis of crack propagation in fretting fatigue specimen repaired by stop hole method. Int J Fatigue. 2022;156:106640–49.
  21. Wang Q, Zhou W, Wang Z, Xiang S, Yao G, Huang Q, et al. Numerical analysis of fracture behaviour for cracked joints in corrugated plate girders repaired by stop-holes. Materials. 2023;16:3606.
  22. Gong H, Jin ZG, Yang FP, Mao WT. Analysis of stop-hole effects on mode I-II fatigue crack behavior for Q420 steel using experiments, FEM and variable length RNN approaches. Theor Appl Fract Mech. 2023;124:103823–35.
  23. Xie XB, Li L. Numerical simulation study on the deformation patterns of surrounding rock in deeply buried roadways under seepage action. Appl Sci-Basel. 2024;14:5276–92.
  24. Yu SY, Ren XH, Zhang JX. Modeling the rock frost cracking processes using an improved ice-stress-damage coupling method. Theor Appl Fract Mech. 2024;131:104421–30.
  25. Zhao K, Liu Y, Ma C, Yan YJ, Feng YC, Tian XQ, et al. Numerical simulation of weathered granite considering microporosity and mechanical parameter variations. Arch Civ Mech Eng. 2024;24:119.
  26. Li WK, Zheng J, Zhang BH, Zhang W. Feasibility exploration of the numerical simulation of photogrammetry in rock slopes based on field tests. Rock Mech Rock Eng. 2024;57:8821–38.
  27. Potyondy DO, Cundall PA. A bonded-particle model for rock. Int J Rock Mech Min Sci. 2004;41:1329–64.
  28. Yuan H, Xiao TL, She HC, Huang M. Crack propagation law of rock with single fissure based on PFC2D. Front Earth Sci. 2023;10:977054.
  29. Liu J, Zhang HL, Bian HB, Wen W, Zeng L. Uniaxial mechanical properties and failure characteristics of fractured silty mudstone. KSCE J Civ Eng. 2023;28:139–54.
  30. Zhao TD, Li Q, Yu BB, Huang C, Gao ZH. Mechanical behavior and failure characteristics of rock with double holes. Structures. 2023;54:38–47.
  31. Wu SY, Huang YH. Macro and meso-crack evolution of granite specimens with non-straight fissures: a comparison between two bond models. Theor Appl Fract Mech. 2023;125:103890–903.
  32. Zhang YP, Shi C, Zhang YL, Yang JX, Chen X. Numerical analysis of the brittle–ductile transition of deeply buried marble using a discrete approach. Comput Part Mech. 2021;8:893–904.
  33. Jing HW, Yin Q, Yang SQ, Chen WQ. Micro-mesoscopic creep damage evolution and failure mechanism of sandy mudstone. Int J Geomech. 2021;21:04021010.
  34. Zhu W, Wang F, Mu J, Yin D, Lu L, Chen Z. Numerical simulation of strength and failure analysis of heterogeneous sandstone under different loading rates. Sci Rep. 2023;13:22722.
  35. Yang XX, Jing HW, Chen KF, Yang SQ. Failure behavior around a circular opening in a rock mass with non-persistent joints: A parallel-bond stress corrosion approach. J Cent South Univ. 2017;24:2406–20.
  36. Ozturk H, Altinpinar M. The estimation of uniaxial compressive strength conversion factor of trona and interbeds from point load tests and numerical modeling. J Afr Earth Sci. 2017;131:71–9.
  37. Zhang YY, Shao ZS, Wei W, Qiao RJ. PFC simulation of crack evolution and energy conversion during basalt failure process. J Geophys Eng. 2019;16:639–51.
  38. Huang CC, Zhu C, Ma YF, Aluthgun Hewage S. Investigating mechanical behaviors of rocks under freeze–thaw cycles using discrete element method. Rock Mech Rock Eng. 2022;55:7517–34.
  39. Cho N, Martin CD, Sego DC. A clumped particle model for rock. Int J Rock Mech Min Sci. 2007;44:997–1010.
  40. Yoon J. Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci. 2007;44:871–89.
  41. Liu H, Wang FM, Shi MS, Tian WL. Mechanical behavior of polyurethane polymer materials under triaxial cyclic loading: a particle flow code approach. J Wuhan Univ Technol-Mat Sci Ed. 2018;33:980–6.
  42. Xu ZH, Wang WY, Lin P, Xiong Y, Liu ZY, He SJ. A parameter calibration method for PFC simulation: development and a case study of limestone. Geomech Eng. 2020;22:97–108.
  43. Ji ST, Karlovšek J. Calibration and uniqueness analysis of microparameters for DEM cohesive granular material. Int J Min Sci Technol. 2022;32:121–36.
  44. Niu Y, Wang JG, Wang XK, Hu YJ, Zhang JZ, Zhang RR, et al. Numerical study on cracking behavior and fracture failure mechanism of flawed rock materials under uniaxial compression. Fatigue Fract Eng Mater Struct. 2023;46:2096–111.
  45. Niu Y, Liu GJ, Zhong Z, Wang JG, Zhang RR, Liu BL. Numerical investigation on fracture characteristic and failure mechanism of rock-like materials with intermittent flaws under compressive-shear loading. Constr Build Mater. 2023;388:18.
  46. Yang SQ, Huang YH. Particle flow study on strength and meso-mechanism of Brazilian splitting test for jointed rock mass. Acta Mech Sin. 2014;30:547–58.
  47. Tan T, Zhang C, Dai BB, Wang YX. Energy characteristics and damage constitutive model of pre‐cracked granite with or without filling materials. Fatigue Fract Eng Mater Struct. 2024;47:3425–43.
  48. Liu Q, Zhao YL, Liao J, Tan T, Wang XG, Li Y, et al. Strength characteristics and damage constitutive model of sandstone under hydro-mechanical coupling. Appl Rheol. 2023;33(1):20230112.
  49. Liu T, Lin BQ, Yang W. Mechanical behavior and failure mechanism of pre-cracked specimen under uniaxial compression. Tectonophysics. 2017;712:330–43.
  50. Liu YH, Zhao HB, Wang L, Wang T, Ji DL, Liu R, et al. Analysis of influence of stress lode angle on stability of roadway surrounding rock. Shock Vib. 2021;2021:1–17.
  51. Erdogan F, Sih GC. On the crack extension in plates under plane loading and transverse shear. J Basic Eng. 1963;85:519–25.
  52. Miao CQ, Wei YT, Yan XQ. A numerical analysis of a center circular-hole crack in a rectangular tensile sheet. Appl Math Comput. 2015;250:356–67.
  53. Hajimohamadi M, Ghajar R. Stress intensity factors for cracks emanating from a circular hole in an infinite quasi‐orthotropic plane. Fatigue Fract Eng Mater Struct. 2018;42:743–51.
  54. Tan T, Zhang C, Li WR, Huang SB, Wang XC. A fracture surface roughness coefficient (FSRC) model for determining residual strength of rocks. Constr Build Mater. 2024;431:136570–81.
  55. Cao FF, Jing LW, Peng SC. Analytical solution of ice–rock-model stress field and stress intensity factors in inhomogeneous media. Appl Sci-Basel. 2024;14:1412–29.
  56. Lin H, Yang HT, Wang YX, Zhao YL, Cao RH. Determination of the stress field and crack initiation angle of an open flaw tip under uniaxial compression. Theor Appl Fract Mech. 2019;104:102358–70.
  57. Niu Y, Hu YJ, Wang JG. Cracking characteristics and damage assessment of filled rocks using acoustic emission technology. Int J Geomech. 2023;23:14.
  58. Zhuang XY, Chun JW, Zhu HH. A comparative study on unfilled and filled crack propagation for rock-like brittle material. Theor Appl Fract Mech. 2014;72:110–20.
  59. Zhou XP, Niu Y, Cheng H, Berto F. Cracking behaviors and chaotic characteristics of sandstone with unfilled and filled dentate flaw. Theor Appl Fract Mech. 2021;112:102876–91.
Language: English
Submitted on: Jan 5, 2025
Accepted on: Apr 15, 2025
Published on: Jun 20, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services

© 2025 Yanzhang Li, Chunyang Zhang, Wenquan Duan, Tao Tan, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.