References
- Shi Y, Long G, Zeng X, Xie Y, Wang H. Green ultra-high performance concrete with very low cement content. Constr Build Mater. 2021;303:124482. 10.1016/j.conbuildmat.2021.124482.
- Zheng K, Liu Y, Huang W, Zhou J, Cui D. Reverse filling cementitious materials based on dense packing: The concept and application. Powder Technol. 2020;359:152–60. 10.1016/j.powtec.2019.09.050.
- Londero C, Klein NS, Mazer W. Study of low-cement concrete mix-design through particle packing techniques. J Build Eng. 2021;42:103071. 10.1016/j.jobe.2021.103071.
- Campos HF, Klein NS, Filho M. Proposed mix design method for sustainable high-strength concrete using particle packing optimization. J Clean Prod. 2020;265:121907. 10.1016/j.jclepro.2020.121907.
- Abushama W, Tamimi AK, Tabsh SW, El-Emam MM, Ibrahim A, Ali TKM. Influence of optimum particle packing on the macro and micro properties of sustainable concrete. Sustainability. 2023;15(19):14331. 10.3390/su151914331.
- Randl N, Steiner T, Ofner S, Baumgartner E, Meszoly T. Development of UHPC mixtures from an ecological point of view. Constr Build Mater. 2014;67:373–8. 10.1016/j.conbuildmat.2013.12.102.
- Yousuf S, Sanchez LFM, Shammeh SA. The use of particle packing models (PPMs) to design structural low cement concrete as an alternative for construction industry. J Build Eng. 2019;25:100815. 10.1016/j.jobe.2019.100815.
- Campos HF, Klein NS, Filho M, Bianchini M. Low-cement high-strength concrete with partial replacement of Portland cement with stone powder and silica fume designed by particle packing optimization. J Clean Prod. 2020;261:121228. 10.1016/j.jclepro.2020.121228.
- Yin T, Yu R, Liu K, Wang Z, Fan D, Wang S, et al. Precise mix-design of ultra-high performance concrete (UHPC) based on physicochemical packing method: from the perspective of cement hydration. Constr Build Mater. 2022;352:128944. 10.1016/j.conbuildmat.2022.128944.
- Soliman NA, Tagnit-Hamou A. Using particle packing and statistical approach to optimize eco-efficient ultra-high-performance concrete. ACI Mater J. 2017;114(6):847–58. 10.14359/51701001.
- Shi C, Wu Z, Xiao J, Wang D, Huang Z, Fang Z. A review on ultra-high performance concrete: Part I. Raw materials and mixture design. Constr Build Mater. 2015;101:741–51. 10.1016/j.conbuildmat.2015.10.088.
- Li LG, Lin CJ, Chen GM, Kwan AKH, Jiang T. Effects of packing on compressive behaviour of recycled aggregate concrete. Constr Build Mater. 2017;157:757–77. 10.1016/j.conbuildmat.2017.09.097.
- De Bono V, Ducoulombier N, Mesnil R, Caron JF. Methodology for formulating low-carbon printable mortar through particles packing optimization. Cem Concr Res. 2024;176:107403. 10.1016/j.cemconres.2023.107403.
- Liu JC, Ji H, Kwan AK, Ye H. Optimization of alkali-activated binder reactive powder concrete based on concept of packing density. Powder Technol. 2024;45(6):567–78. 10.1016/j.powtec.2024.119778.
- Sengupta J, Dhang N, Deb A. Efficient mix design of one-part alkali-activated concrete using packing density method and its optimization through Taguchi-GRA. Constr Build Mater. 2024;438(9):345–56. 10.1016/j.conbuildmat.2024.136869.
- Bala M, Zentar R, Boustingorry P. Parameter determination of the Compressible Packing Model (CPM) for concrete application. Powder Technol. 2020;367:56–66. 10.1016/j.powtec.2019.11.085.
- Mohamed MAE. Hot water concrete tank to store solar generated energy. Germany: TU Berlin; 2014. 10.14279/depositonce-4015.
- Zhao J, Wang D, Yan P. Design and experimental study of a ternary blended cement containing high volume steel slag and blast-furnace slag based on Fuller distribution model. Constr Build Mater. 2017;140:248–56. 10.1016/j.conbuildmat.2017.02.119.
- Chen JJ, Ng PL, Chu SH, Guan GX, Kwan AKH. Ternary blending with metakaolin and silica fume to improve packing density and performance of binder paste. Constr Build Mater. 2020;252:119031. 10.1016/j.conbuildmat.2020.119031.
- Wang X, Yu R, Song Q, Shui Z, Liu Z, Wu S, et al. Optimized design of ultra-high performance concrete (UHPC) with a high wet packing density. Cem Concr Res. 2019;126:105921. 10.1016/j.cemconres.2019.105921.
- Qiu J, Guo Z, Yang L, Jiang H, Zhao Y. Effects of packing density and water film thickness on the fluidity behaviour of cemented paste backfill. Powder Technol. 2020;359:27–35. 10.1016/j.powtec.2019.10.046.
- Gayathiri K, Praveenkumar S. Retaining the particle packing approach and its application in developing the cement composites towards sustainability. J Build Pathol Rehabilitation. 2023;8(26):26. 10.1007/s41024-023-00271-9.
- Li LG, Kwan KH. Effects of superplasticizer type on packing density, water film thickness and flowability of cementitious paste. Constr Build Mater. 2015;86:113–9. 10.1016/j.conbuildmat.2015.03.104.
- Jiao D, Shi C, Yuan Q, An X, Liu Y, Li H. Effect of constituents on rheological properties of fresh concrete - A review. Cem Concr Compos. 2017;83:146–59. 10.1016/j.cemconcomp.2017.07.016.
- Li D, Wang D, Ren C, Rui Y. Investigation of rheological properties of fresh cement paste containing ultrafine circulating fluidized bed fly ash. Constr Build Mater. 2018;188:1007–13. 10.1016/j.conbuildmat.2018.07.186.
- Navarrete I, Kurama Y, Escalona N, Lopez M. Impact of physical and physicochemical properties of supplementary cementitious materials on structural build-up of cement-based pastes. Cem Concr Res. 2020;130:105994. 10.1016/j.cemconres.2020.105994.
- Chu SH, Chen JJ, Li LG, Ng PL, Kwan AKH. Roles of packing density and slurry film thickness in synergistic effects of metakaolin and silica fume. Powder Technol. 2021;387:575–83. 10.1016/j.powtec.2021.04.029.
- Fennis SAAM, Walraven JC, Nijland TG. Measuring the packing density to lower the cement content in concrete. Tailor made concrete structures-Walraven & Stoelhorst (eds) 2008 Talyor & Francis Group. London. 2008;419–24. 10.1201/9781439828410.ch71.
- Ghasemi Y, Emborg ME, Cwirzen A. Estimation of specific surface area of particles based on size distribution curve. Mag Concr Res. 2018;70(10):533–40. 10.1680/jmacr.17.00045.
- Wong Henry HC, Kwan Albert KH. Packing density of cementitious materials: part 1 – measurement using a wet packing method. Mater Struct. 2008;41:689–701. 10.1617/s11527-007-9274-5.
- Fennis SAAM. Design of ecological concrete by particle packing optimization. PhD thesis, Delft University of Technology, The Netherlands; 2011. http://repository.tudelft.nl/assets/uuid:5a1e445b-36a7-4f27-a89a-d48372d2a45c/fennis_final.pdf.
- Haist M, Link J, Nicia D, Leinitz S, Baumert C, Von Bronk T, et al. Interlaboratory study on rheological properties of cement pastes and reference substances: comparability of measurements performed with different rheometers and measurement geometries. Mater Struct. 2020;53(92):1–26. 10.1617/s11527-020-01477-w.
- Qian Y, Kawashima S. Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy. Cem Concr Compos. 2018;86:288–96. 10.1016/j.cemconcomp.2017.11.019.
- Peng Y, Unluer C. Advances in rheological measurement and characterization of fresh cement pastes. Powder Technol. 2023;429:11890. 10.1016/j.powtec.2023.118903.
- Feys D, Wallevik JE, Yahia A, Khayat KH, Wallevik OH. Extension of the Reiner–Riwlin equation to determine modified Bingham parameters measured in coaxial cylinders rheometers. Mater Struct. 2013;46:289–311. 10.1617/s11527-012-9902-6.
- Mehdipour I, Khayat KH. Effect of particle-size distribution and specific surface area of different binder systems on packing density and flow characteristics of cement paste. Cem Concr Compos. 2017;78:120–31. 10.1016/j.cemconcomp.2017.01.005.