References
- Aebi H. (1984). Catalase in vitro. Method. Enzymol., 105: 121-126.
- Ahmadi F., Rahimi F. (2011). The effect of different levels of nano silver on performance and retention of silver in edible tissues of broilers. World Appl. Sci., 12: 1-4.
- Ahmadi F., Khah M.M., Javid S., Zarneshan A., Akradi L., Salehifar P. (2013). The effect of dietary silver nanoparticles on performance, immune organs, and lipid serum of broiler chickens during starter period. Int. J. Biosci., 3: 95-100.
- Balasubramanian S.K., Jittiwat J., Manikandan J., Ong C.N., Yu L.E., Ong W.Y. (2010). Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials, 31: 2034-2042.
- Bancos S., Stevens D.L., Tyner K.M. (2014). Effects of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production and phagocytosis in vitro. Int. J. Nanomed., 24: 183-205.
- Bartneck M., Keul H.A., Zwadlo-Klarwasser G., Groll J. (2010). Phagocytosis independent extracellular nanoparticle clearance by human immune cells. Nano Lett., 10: 59-63.
- Bomski H. (1995). Biernacki’s reaction (in Polish). In: Basic hematology laboratory analyses, Bomski H. (ed.). National Institute of Medical Publications, Warsaw, pp. 161-168.
- Cho W.S., Cho M., Jeong J., Choi M., Cho H.Y., Han B.S., Kim S.H., Kim H.O., Lim Y.T., Chung B.H., Jeon J. (2009). Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Tox. Appl. Pharmacol., 236: 16-24.
- Chuammitri P., Ostojić J., Andreasen C.B., Redmond S.B., Lamont S.J., Palić D. (2009). Chicken heterophil extracellular traps (HETs): novel defense mechanism of chicken heterophils. Vet. Immunol. Immunop., 12: 126-131.
- Dinant H.J., Dijkmans B.A.C. (1999). New therapeutic targets for rheumatoid arthritis. Pharm. World Sci., 21: 49-59.
- Dobrzański Z., Zygadlik K., Patkowska- Sokoła B., Nowakowski P., Jan- czak M., Sobczak A., Bodkowski R., (2010). The effectiveness of nanosilver and mineral sorbents in the reduction of ammonia emissions from livestock manure. Przem. Chem., 4: 348-351.
- Dykman L.A., Sumaroka M.V., Staroverov S.A., Zaĭtseva I.S., Bogatyrev V.A. (2004). Immunogenic properties of the colloidal gold (in Russian). Izv. Akad. Nauk. Ser. Biol., 1: 86-91.
- Hagens W.I., Oomen A.G.,de Jong W.H., Cassee F.R., Sips A.J. (2007). What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul. Toxicol. Pharmacol., 49: 217-219.
- Harmon B.G. (1998). Avian heterophils in inflammation and disease resistance. Poultry Sci., 77: 972-977.
- Hu M., Chen J., Li Z.Y., Au L., Hartland G.V., Li X., Marquez M., Xia Y. (2006). Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev., 35: 1084-1094.
- Javanovic B., Palic D. (2012). Immunotoxicology of non-functionalized engineered nanoparticles in aquatic organism with special emphasis on fish - review of current knowledge, gap identification, and call for further research. Aquat. Toxicol., 118-119: 14-151.
- Jia H.Y., Liu Y., Zhang X.J., Han L., Du L.B., Tian Q., Xu Y.C. (2009). Potential oxidative stress of gold nanoparticles by induced-NOreleasing in serum. J. Am. Chem. Soc., 131: 40-41.
- Joseph M.M., Aravind S.R., Varghese S., Min S., Sreelek T.T. (2013). PST-Gold nanoparticle as an effective anticancer agent with immunomodulatory properties. Coll. Surf. B. Biointerfaces, 104: 32-39.
- Kiruba D., Tharmarai V., Anitha Sironmani T., Pitchumani K. (2010). Toxicity and immunological activity of silver nanoparticles. Appl. Clay Sci., 48: 547-551.
- Lee J.Y., Park W., Yi D.K. (2012). Immunostimulatory effects of gold nanorod and silica-coated gold nanorod on RAW 264.7 mouse macrophages. Toxicol. Letters, 209: 51-57.
- Luo Y.H., Chang L.W., Lin P. (2015). Metal-based nanoparticles and the immune system: activation, inflammation, and potential applications. Biom. Res. Int., 15, 12. (Published online).
- Małaczewska J. (2015). Effect of oral administration of commercial gold nanocolloid on peripheral blood leukocytes in mice. Pol. J. Vet. Sci., 18: 273-282.
- Ognik K., Sembratowicz I. (2012). Effect of Aloe-plus preparation supplement on hematological and immunological blood parameters and performance of turkey hens. Turkish J. Vet. Anim. Sci., 36: 491-498.
- Ognik K., Cholewińska E., Czech A., Kozłowski K., WlazłoŁ., Nowakowicz - Dębek B., Szlązak R., Tutaj K. (2016 a). Effect of silver nanoparticles on the immune, redox, and lipid status of chicken blood. Czech J. Anim. Sci., 61: 450-461.
- Ognik K., Sembratowicz I., Cholewińska E., WlazłoŁ., Nowakowicz-Dę - bek B., Szlązak R., Tutaj K. (2016 b). The effect of chemically-synthesized silver nanoparticles on performance and the histology and microbiological profile of the jejunum in chickens. Ann. Anim. Sci., 16: 439-450.
- Ognik K., Stępniowska A., Kozłowski K. (2017). The effect of administration of silver nanoparticles to broiler chickens on estimated intestinal absorption of iron, calcium, and potassium. Livest. Sci., 200: 40-45.
- Ognik K., Sembratowicz I., Cholewińska E., Jankowski J., Kozłowski K., Juśkiewicz J., Zduńczyk Z. (2018). The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood. Anim. Sci. J., 89: 579-588.
- Pan Y., Leifert A., Ruau D., Neuss S., Bornemann J., Schmid G., Brandau W., Si - mon U., Jahnen-Dechen W. (2009). Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 5: 2067-2076.
- Park B.H., Fikrig S.M., Smithwick E.M. (1968). Infection and nitroblue tetrazolium reduction by neutrophils. The Lancet, 7: 532-534.
- Pedersen M.O., Larsen A., Pedersen D.S., Stoltenberg M., Penkowa M. (2009). Metallic gold reduces TNFalpha expression, oxidative DNAdamage and pro-apoptotic signals after experimental brain injury. Brain Res., 1271: 103-113.
- Polińska B., Matowicka- Karna J., Kemona H. (2009). The cytokines in inflammatory bowel disease (in Polish). Post. Hig. Med. Dośw., 63: 389-394.
- Savolainen K., Alenius H., Norppa H., Pylkkänen L., Tuomi T., Kasper G. (2010). Risk assessment of engineered nanomaterials and nanotechnologies -areview. Toxicol., 269: 92-104.
- Sekhon B.S. (2014). Nanotechnology in agri-food production: an overview. Nanotech. Sci. Appl., 7: 31-53.
- Sembratowicz I., Ognik K., Truchliński J., Modzelewska- Banachiewicz B. (2004). The influence of 1,2,4-triazole and 5-oxo triazyne derivatives on some blood and performance indices of turkey hens. J. Anim. Feed Sci., 13: 39-42.
- Shahbazi M.A., Hamidi M., Makila E.M., Zhang H., Almeida P.V., Kaasalai - nen M., Salonen J.J., Hirvonen J.T., Santos H.A. (2013). The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials, 31: 7776-7789.
- Sharma R.K., Cwiklinski K., Aalinkeel R., Reynolds J.L., Sykes D.E., Quaye E., Oh J., Mahajan S.D., Schwartz S.A. (2017). Immunomodulatory activities of curcumin-stabilized silver nanoparticles: Efficacy as an antiretroviral therapeutic. Immunol. Invest., 46: 833-846.
- Siwicki A.K., Anderson D.P. (1993). Nonspecific defence mechanisms assay in fish. II. Potential killing activity of neutrophils and manocytes, lysozyme activity in serum and organs, and total immunoglobulin (Ig) level in serum. Fish Diseases Diagnosis and Prevention Methods, FAO-Project CGP/INT/526/JAN, FFI Olsztyn, 105-112.
- Siwicki A.K., Anderson D.P., Rumsey G.L. (1994). Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet. Immunol. Immunop., 41: 125-139.
- Smulikowska S., Rutkowski A. (2005). Nutrient requirements of poultry. Feeding recommendations and nutritive value of feed. 4th ed. (in Polish). The Kielanowski Institute of Animal Physiology and Nutrition of the Polish Academy of Sciences, Jabłonna, Poland.
- Sumbayev V.V., Yasinska I.M., Garcia C.P., Gilliland D., Lall G.S., Gibbs B.F., Bonsall D.R., Varani L., Rossi F., Calzolai L. (2013). Gold nanoparticles downregulate interleukin-1β-induced pro-inflammatory responses. Small, 9: 472-477.
- Sunderman F.W. Jr, Nomoto S. (1970). Measurement of human serum ceruloplasmin by its pphenylenediamine oxidase activity. Clin. Chem., 16: 903-910.
- Victor E.G., Silveira P.C.L., Possato J.C.,da Rosa L.G., Munari U.B.,de Sou- za C.T., Pinho R.A.,da Silva L., Streck E.L., Paula M.M.S. (2012). Pulsed ultrasound associated with gold nanoparticle gel reduces oxidative stress parameters and expression of pro--inflammatory molecules in an animal model of muscle injury. J. Nanobiotechnol., 10: 11.
- Yen H.J., Hsu S.H., Tsai C.L. (2009). Cytotoxicity and immunological response of gold and silver nanaoparticles of different size. Small, 5: 1553-1561.
- Zhao J., Riediger M. (2014). Detecting the oxidative reactivity of nanoparticles:anew protocol for reducing artifacts. J. Nanopart. Res., 16: 2493.