Have a personal or library account? Click to login
Dose-Dependent Influence of Dietary Cu-Glycine Complex on Bone and Hyaline Cartilage Development in Adolescent Rats Cover

Dose-Dependent Influence of Dietary Cu-Glycine Complex on Bone and Hyaline Cartilage Development in Adolescent Rats

Open Access
|Oct 2017

References

  1. Andersen O. (2004). Chemical and biological considerations in the treatment of metal intoxications by chelating agents. Mini Rev. Med. Chem., 4: 11–21.
  2. AOAC (2000). The Official Methods of Analysis of AOAC International. Gaithersburg, MD, USA, AOAC Inter., 17th ed., pp. 2200.
  3. Apgar A., Kornegay E.T. (1996). Mineral balance of finishing pigs fed copper sulfate or a copperlysine complex at growth-stimulating levels. J. Anim. Sci., 74: 1594–1600.10.2527/1996.7471594x8818804
  4. Armstrong T.A., Cook D.R., Ward M.M., Williams C.M., Spears J.W. (2004). Effect of dietary copper source (cupric citrate and cupric sulphate) and concentration on growth performance and faecal copper excretion in weanling pigs. J. Anim. Sci., 82: 1234–1240.10.2527/2004.8241234x15080347
  5. Baker A., Harvey L., Majask-Newman G., Fairweather-Tait S., Flynn A., Cashman K. (1999). Effect of dietary copper intakes on biochemical markers of bone metabolism in healthy adult males. Eur. J. Clin. Nutr., 53: 408–412.
  6. Banks K.M., Thompson K.L., Rush J.K., Applegate T.J. (2004). Effects of copper source on phosphorus retention in broiler chicks and laying hens. Poultry Sci., 83: 990–996.10.1093/ps/83.6.99015206627
  7. Baxter J.H., Van Wyk J.J. (1953). A bone disorder associated with copper deficiency. I. Gross morphological, roentgenological, and chemical observations. Bull. Johns Hopkins Hosp., 93: 1–23.
  8. Beattie J.H., Avenell A. (1992). Trace element nutrition and bone metabolism. Nutr. Res. Rev., 5: 167–188.10.1079/NRR1992001319094319
  9. Bonjour J.P., Theintz G., Law F., Slosman D., Rizzoli R. (1994). Peak bone mass. Osteoporos. Int., 4 (Suppl. 1): S7–S13.
  10. Camplejohn K.L., Allard S.A. (1988). Limitations of safranin ‘O’ staining in proteoglycan-depleted cartilage demonstrated with monoclonal antibodies. Histochemistry, 89: 185–188.
  11. Chen H., Huang G., Su T., Gao H., Attieh Z.K., Mc Kie A.T., Anderson G.J., Vulpe C.D. (2006). Decreased hephaestin activity in the intestine of copper-deficient mice causes systemic iron deficiency. J. Nutr., 136: 1236–1241.
  12. Dobrowolski P., Tomaszewska E., Kurlak P., Pierzynowski S.G. (2016). Dietary 2-oxoglutarate mitigates gastrectomy-evoked structural changes in cartilage of female rats. Exp. Biol. Med., 241: 14–24.
  13. Hochberg Z. (2002). Clinical physiology and pathology of the growth plate. Best Pract. Res. Clin. Endocrinol. Metab., 16: 399–419.10.1053/beem.2002.020812464225
  14. Jonas J., Burns J., Abel E.W., Cresswell M.J., Strain J.J., Paterson C.R. (1993). Impaired mechanical strength of bone in experimental copper deficiency. Ann. Nutr. Metab., 37: 245–252.
  15. Kadri A., Ea H.K., Bazille C., Hannouche D., Lioté F., Cohen-Solal M.E. (2008). Osteoprotegerin inhibits cartilage degradation through an effect on trabecular bone in murine experimental osteoarthritis. Arthritis Rheum., 58: 2379–2386.10.1002/art.2363818668550
  16. Kwiecień M., Winiarska-Mieczan A., Zawiślak K., Sroka S. (2014). Effect of copper glycinate chelate on biomechanical, morphometric and chemical properties of chicken femur. Ann. Anim. Sci., 14: 127–139.10.2478/aoas-2013-0085
  17. Linder M.C., Hazegh-Azam M. (1996). Copper biochemistry and molecular biology. Am. J. Clin. Nutr., 63: 797S–811S.
  18. Massie H.R., Aiello V.R., Shumway M.E., Armstrong T. (1990). Calcium, iron, copper, boron, collagen, and density changes in bone with aging in C57BL/6J male mice. Exp. Gerontol., 25: 469–481.
  19. Männer K., Simon O., Schlegel P. (2006). Effects of different iron, manganese, zinc and copper sources (sulfates, chelates, glycinates) on their bioavailability in early weaned piglets. In: 9. Tagung Schweine- und Geflügelernährung, Rodehutscord M. (ed.). Martin-Luther-Universität Halle-Wittenberg, Halle, Germany, pp. 25–27.
  20. Mesías M., Seiquer I., Pilar Navarro M. (2012). Consumption of highly processed foods: Effects on bioavailability and status of zinc and copper in adolescents. Food Res. Int., 45: 184–190.10.1016/j.foodres.2011.09.030
  21. Megahed M.A., Hassanin K.M.A., Youssef I.M.I., Elfghi A.B.A., Amin K.A. (2014). Alterations in plasma lipids, glutathione and homocysteine in relation to dietary copper in rats. J. Invest. Biochem., 3: 21–25.
  22. Muszyński S., Kwiecień M., Tomaszewska E., Świetlicka I., Dobrowolski P., Kasperek K., Jeżewska-Witkowska G. (2017). Effect of caponization on performance and quality characteristics of long bones in Polbar chickens. Poultry Sci., 96: 491–500.10.3382/ps/pew30127591270
  23. Nielsen F.H., Milne D.B. (2004). A moderately high intake compared to a low intake of zinc depresses magnesium balance and alters indices of bone turnover in postmenopausal women. Eur. J. Clin. Nutr., 58: 703–710.10.1038/sj.ejcn.160186715116072
  24. Ognik K., Stępniowska A., Cholewińska E., Kozłowski K. (2016). The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poultry Sci., 95: 2045–2051.
  25. Oxlund H., Barckman M., Ørtoft G., Andreassen T.T. (1995). Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone, 17 (4 Suppl.): S365–S371.10.1016/8756-3282(95)00328-B
  26. Palacios C. (2006). The role of nutrients in bone health, from A to Z. Crit. Rev. Food Sci. Nutr., 46: 621–628.10.1080/10408390500466174
  27. Pesti G.M., Bakalli R.I. (1996). Studies on the feeding of cupric sulfate pentahydrate and cupric citrate to broiler chickens. Poultry Sci., 75: 1086–1091.10.3382/ps.0751086
  28. Reeves P.G., De Mars L.C. (2004). Copper deficiency reduces iron absorption and biological halflife in male rats. J. Nutr., 134: 1953–1957.
  29. Riggins R.S., Cartwright A.G., Rucker R.B. (1979). Viscoelastic properties of copper deficient chick bone. J. Biomech., 12: 197–203.10.1016/0021-9290(79)90142-8
  30. Rodríguez J.P., Ríos S., González M. (2002). Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J. Cell. Biochem., 85: 92–100.
  31. Romaña D.L.de, Olivares M., Uauy R., Araya M. (2011). Risks and benefits of copper in light of new insights of copper homeostasis. J. Trace Elem. Med. Biol., 25: 3–13.
  32. Świątkiewicz S., Koreleski J., Zhong D.Q. (2001). The bioavailability of zinc from inorganic and organic sources in broiler chickens as affected by addition of phytase. J. Anim. Feed Sci., 10: 317–328.
  33. Tomaszewska E., Dobrowolski P., Kwiecień M., Burmańczuk N., Badzian B., Szymańczyk S., Kurlak P. (2014). Alterations of liver histomorphology in relation to copper supplementation in inorganic and organic form in growing rats. Bull. Vet. Inst. Pulawy, 58: 479–486.
  34. Tomaszewska E., Dobrowolski P., Bieńko M., Prost Ł., Szymańczyk S., Zdy-bel A. (2015). Effects of 2-oxoglutaric acid on bone morphometry, densitometry, mechanics, and immunohistochemistry in 9-month-old boars with prenatal dexamethasone-induced osteopenia. Connect. Tissue Res., 56: 483–492.
  35. Tomaszewska E., Dobrowolski P., Winiarska-Mieczan A., Kwiecień M., Tomczyk A., Muszyński S., Radzki R. (2016 a). Alteration in bone geometric and mechanical properties, histomorphometrical parameters of trabecular bone, articular cartilage and growth plate in adolescent rats after chronic co-exposure to cadmium and lead in the case of supplementation with green, black, red and white tea. Environ. Toxicol. Pharmacol., 46: 36–44.10.1016/j.etap.2016.06.02727423034
  36. Tomaszewska E., Dobrowolski P., Kwiecień M., Winiarska-Mieczan A., Tomczyk A., Muszyński S. (2016 b). The influence of the dietary Cu-glycine complex on the histomorphology of cancellous bone, articular cartilage, and growth plate as well as bone mechanical and geometric parameters is dose-dependent. Biol. Trace Elem. Res., DOI: 10.1007/s12011-016-0894-x.10.1007/s12011-016-0894-x548660027888452
  37. Tomaszewska E., Dobrowolski P., Kwiecień M., Wawrzyniak A., Burmańczuk N. (2016 c). Comparison of the effect of a standard inclusion level of inorganic zinc to organic form at lowered level on bone development in growing male Ross broiler chickens. Ann. Anim. Sci., 16: 1–13.10.1515/aoas-2015-0087
  38. Tomaszewska E., Muszyński S., Ognik K., Dobrowolski P., Kwiecień M., Juśkiewicz J., Chocyk D., Świetlicki M., Blicharski T., Gładyszewska B. (2017). Comparison of the effect of dietary copper nanoparticles with copper (II) salt on bone geometric and structural parameters as well as material characteristics in a rat model. J. Trace Elem. Med. Biol., DOI: 10.1016/j.jtemb.2017.05.002.10.1016/j.jtemb.2017.05.00228595781
  39. Uauy R., Olivares M., Gonzalez M. (1998). Essentiality of copper in humans. Am. J. Clin. Nut., 67 (5 Suppl): 952S–959S.
  40. Urbano M.R., Vitalle M.S., Juliano Y., Amancio O.M. (2002). Iron, copper and zinc in adolescents during pubertal growth spurt. J. Pediatr. (Rio J.), 78: 327–334.
DOI: https://doi.org/10.1515/aoas-2017-0022 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1089 - 1105
Submitted on: Mar 25, 2017
Accepted on: Jul 27, 2017
Published on: Oct 27, 2017
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Ewa Tomaszewska, Piotr Dobrowolski, Małgorzata Kwiecień, Anna Winiarska-Mieczan, Agnieszka Tomczyk, Siemowit Muszyński, Bożena Gładyszewska, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.