Have a personal or library account? Click to login
Distribution of non-allelic histone H1 subtypes in five avian species Cover

Distribution of non-allelic histone H1 subtypes in five avian species

By: Andrzej Kowalski and  Jan Pałyga  
Open Access
|Apr 2017

References

  1. Ajiro K., Borun T.W., Solter D. (1981). Quantitative changes in the expression of histone H1 and H2Bsubtypes and their relationship to the differentiation of mouse embryonal carcinoma cells. Dev. Biol., 86: 206-211.
  2. Bhan S., May W., Warren S.L., Sittman D.B. (2008). Global gene expression analysis reveals specific and redundant roles for H1 variants, H1c and H10, in gene expression regulation. Gene, 414: 10-18.
  3. Catez F., Ueda T., Bustin M. (2006). Determinants of histone H1 mobility and chromatin binding in living cells. Nat. Struct. Mol. Biol., 13: 305-310.
  4. Clausell J., Happel N., Hale T.K., Doenecke D., Beato M. (2009). Histone H1 subtypes differently modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNFor NURF. PLo S One, 4: e0007243. doi: 10.1371/journal.pone.0007243.
  5. Daujat S., Zeissler U., Waldmann T., Happel N., Schneider R. (2005). HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding. J. Biol. Chem., 280: 38090-38095.
  6. Fan Y., Sirotkin A.M., Russel R.G., Ayala J., Skoultchi A.I. (2001). Individual somatic H1 subtypes are dispensable for mouse development even in mice lacking the H1(0) replacement subtype. Mol. Cell. Biol., 21: 7933-7943.
  7. Fan Y., Nikitina T., Zhao J., Fleury T.J., Bhattacharyya R., Bouhassira E.E., Stein A., Woodcock C.L., Skoultchi A.I. (2005). Histone H1 depletion in mammals alter global chromatin structure but causes specific changes in gene regulation. Cell, 123: 1199-1212.
  8. Garg M., Perumalsamy L.R., Shivashankar G.V., Sarin A. (2014). The linker histone H1.2 is an intermediate in the aptoptotic response to cytokine deprivation in T-effectors. Int. J. Cell Biol., 2014: 674753. doi: 10.1155/2014/674753.
  9. Hansen J.C. (2002). Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Ann. Rev. Biophys. Biomol. Struct., 31: 361-392.
  10. Happel N., Doenecke D. (2009). Histone H1 and its isoforms: contribution to chromatin structure and function. Gene, 431: 1-12.
  11. Happel N., Warneboldt J., Hänecke K., Haller F., Doenecke D. (2009). H1 subtype expression during cell proliferation and growth arrest. Cell Cycle, 8: 2226-2232.
  12. Hashimoto H., Takami Y., Sonoda E., Iwasaki T., Iwano H., Tachibana M., Takeda S., Nakayama T., Kimura H., Shinkai Y. (2010). Histone H1 null vertebrate cells exhibit altered nucleosome architecture. Nucleic Acids Res., 38: 3533-3545.
  13. Hergeth S.P., Schneider R. (2015). The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep., 16: 1439-1453.
  14. Izzo A., Schneider R. (2016). The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics. Biochim. Biophys. Acta, 1859: 486-495.
  15. Izzo A., Kamieniarz K., Schneider R. (2008). The histone H1 family: specific members, specific functions? Biol. Chem., 389: 333-343.
  16. Izzo A., Kamieniarz - Gdula K., Ramirez F., Noureen N., Kind J., Manke T.,van Steensel B., Schneider R. (2013). The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells. Cell Rep., 3: 2142-2154.
  17. Kalashnikova A.A., Rogge R.A., Hansen J.C. (2016). Linker histone H1 and protein-protein interactions. Biochim. Biophys. Acta, 1859: 455-461.
  18. Kavi H., Lu X., Xu N., Bartholdy B.A., Vershilova E., Skoultchi A.I., Fyodorov D.V. (2015). Agenetic screen and transcript profiling revealedashared regulatory program for Drosophila linker histone H1 and chromatin remodeler CHD1. G3, 5: 677-687.
  19. Kowalski A. (2015). Abundance of intrinsic structural disorder in the histone H1 subtypes. Comput. Biol. Chem., 59: 16-27.
  20. Kowalski A., Pałyga J. (2011). Chromatin compaction in terminally differentiated avian blood cells: the role of linker histone H5 and non-histone protein MENT. Chromosome Res., 19: 579-590.
  21. Kowalski A., Pałyga J. (2012 a). Linker histone subtypes and their allelic variants. Cell Biol. Int., 36: 981-996.10.1042/CBI2012013323075301
  22. Kowalski A., Pałyga J. (2012 b). High-resolution two-dimensional polyacrylamide gel electrophoresis: Atool for identification of polymorphic and modified linker histone components. In: Gel Electrophoresis - Principles and Basics, Magdeldin S. (ed.). In Tech (Croatia), pp. 117-136.10.5772/38235
  23. Kowalski A., Pałyga J. (2016). Modulation of chromatin function through linker histone H1 variants. Biol. Cell, 108: 1-18.
  24. Koutzamani E., Loborg H., Sarg B., Lindner H.H., Rundquist I. (2002). Linker histone subtype composition and affinity for chromatin in situ in nucleated mature erythrocytes. J. Biol. Chem., 227: 44688-44694.
  25. Lennox R.W., Cohen L.H. (1984). The alterations in histone H1 complement during mouse spermatogenesis and their significance for H1 subtype function. Dev. Biol., 103: 80-84.
  26. Lu H., Hamkalo B., Parseghian M.H., Hansen J.C. (2009). Chromatin condensing functions of the linker histone C-terminal domain are mediated by specific amino acid composition and intrinsic protein disorder. Biochemistry, 48: 164-172.
  27. Medrzycki M., Zhang Y., Cao K., Fan Y. (2012). Expression analysis of mammalian linkerhistone subtypes. J. Vis. Exp., (61). doi: 10.3791/3577.
  28. Meergans T., Albig W., Doenecke D. (1997). Varied expression patterns of human histone H1 genes in different cell lines. DNA Cell Biol., 16: 1041-1049.
  29. Millãn- Ariño L., Izquierdo-Bouldstridge A., Jordan A. (2016). Specificities and genomic distribution of somatic mammalian histone H1 subtypes. Biochim. Biophys. Acta, 1859: 510-519.
  30. Montes de Oca R., Lee K.K., Wilson K.L. (2005). Binding of barrier to autointegration factor (BAF) to histone H3 and selected linker histones including H1.1. J. Biol. Chem., 280: 42252-42262.
  31. Neelin J.M., Neelin E.M., Lindsay D.W., Pałyga J., Nichols C.R., Cheng K.M. (1995). The occurrence ofamutant dimerizable histone H5 in Japanese quail erythrocytes. Genome, 38: 982-990.
  32. Ni J.Q., Liu L.P., Hess D., Rietdorf J., Sun F.L. (2006). Drosophila ribosomal proteins are associated with linker histones H1 and suppress gene transcription. Gene. Dev., 20: 1959-1973.
  33. Over R.S., Michaels S.D. (2014). Open and closed: the roles of linker histones in plants and animals. Mol. Plant, 7: 481-491.
  34. Pałyga J. (1991). Acomparison of the histone H1 complements of avian erythrocytes. Int. J. Biochem., 23: 845-849.
  35. Parseghian M.H. (2015). What is the role of histone H1 heterogeneity? AIMS Biophys., 2: 724-772.
  36. Parseghian M.H., Newcomb R.L., Winokur S.T., Hamkalo B.A. (2000). The distribution of somatic H1 subtypes is non-random on active vs. inactive chromatin: distribution in human fetal fibroblasts. Chromosome Res., 8: 405-424.
  37. Peng Z., Mizianty M.J., Xue B., Kurgan L., Uversky V.N. (2012). More than just tails: intrinsic disorder in histone proteins. Mol. Biosyst., 8: 1886-1901.
  38. Routh A., Sandin S., Rhodes D. (2008). Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc. Natl. Acad. Sci. USA, 105: 8872-8877.
  39. Sarg B., Lopez B., Lindner H., Ponte I., Suau P., Roque A. (2014). Sequence conservation of linker histones between chicken and mammalian species. Data Brief, 1: 60-64.
  40. Sarg B., Lopez R., Lindner H., Ponte I., Suau P., Roque A. (2015). Identification of novel post-translational modifications in linker histones from chicken erythrocytes. J. Proteomics, 113: 162-177.
  41. Shannon M.F., Wells J.R.E. (1987). Characterization of the six chicken histone H1 proteins and alignment with their respective genes. J. Biol. Chem., 262: 9664-9668.
  42. She W., Grimanelli D., Rutowicz K., Whitehead M.W.J., Puzio M., Kotliński M., Jerzmanowski A., Baroux C. (2013). Chromatin reprogramming during the somatic-toreproductive cell fate transition in plants. Development, 140: 4008-4019.
  43. Soria G., Polo S.E., Almouzni G. (2012). Prime, repair, restore: the active role of chromatin in the DNAdamage response. Mol. Cell, 46: 722-734.
  44. Talbert P.B., Ahmad K., Almouzni G., Ausio J., Berger F., Bhalla P.L., Bonner W.M., Cande W.Z., Chadwick B., Chan S.W.L., Cross G.A.M,, Cui L., Dimitrov S.I., Doenceke D., Eirin-Lopez J.M., Gorovsky M.A., Hake S.B., Hamkalo B.A., Holec S., Jacobsen S.E., Kamieniarz K., Kchohbin S., Ladurner A.G., Landsman D., Latham J.A., Loppin B., Malik H.S., Marzluff W.F., Pehrson J.R., Postberg J., Schneider R., Singh M.B., Smith M.M., Thompson E., Torres - Padilla M-E., Tremethick D.J., Turner B.M., Waterborg J.H., Wollmann H., Yelagandula R., Zhu B., Henikoff S. (2012). Aunified phylogeny-based nomenclature for histone variants. Epigenet. Chromatin, 5: 7. doi: 10.1186/1756-8935-5-7.
  45. Th’ng J.P., Sung R., Ye M., Hendzel M.J. (2005). H1 family histone in the nucleus. Control of binding and localization by the C-terminal domain. J. Biol. Chem., 280: 27809-27814.
  46. Yang S-M., Kim B.J., Norwood Toro L., Skoultchi A.I. (2013). H1 linker histone promotes epigenetic silencing by regulating both DNAmethylation and histone H3 methylation. Proc. Natl. Acad. Sci. USA, 110: 1708-1713.
  47. Zhang Y., Liu Z., Medrzycki M., Cao K., Fan Y. (2012). Reduction of Hox gene expression by histone H1 depletion. PLo S One, 7:e38829. doi: 10.1371/journal.pone.0038829.
DOI: https://doi.org/10.1515/aoas-2016-0063 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 385 - 398
Submitted on: Jan 28, 2016
Accepted on: Oct 11, 2016
Published on: Apr 28, 2017
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Andrzej Kowalski, Jan Pałyga, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.