Have a personal or library account? Click to login
Alterations in intestinal and liver histomorphology and basal hematological and biochemical parameters in relation to different sources of dietary copper in adult rats Cover

Alterations in intestinal and liver histomorphology and basal hematological and biochemical parameters in relation to different sources of dietary copper in adult rats

Open Access
|Apr 2017

References

  1. Aigner E., Strasser M., Haufe H., Sonnweber T., Hohla F., Stadlmayr A., Solioz M., Tilg H., Patsch W., Weiss G., Stickel F., Datz C., (2010). Arole for low hepatic copper concentrations in nonalcoholic fatty liver disease. Am. J. Gastroenterol., 105: 1978-1985.
  2. Allen K.G.D., Klevay L.M. (1978). Copper deficiency and cholesterol metabolism in the rat. Atherosclerosis, 31: 259-271.
  3. Andersen O. (2004). Chemical and biological considerations in the treatment of metal intoxications by chelating agents. Mini. Rev. Med. Chem., 4: 1-21.
  4. Apgar G.A., Kornegay E.T. (1996). Mineral balance of finishing pigs fed copper sulfate oracopper-lysine complex at growth-stimulating levels. J. Anim. Sci. 74:1594-1600.
  5. Arakeri G., Brennan P.A. (2013). Dietary copper: Anovel predisposing factor for oral submucous fibrosis? Med. Hypotheses, 80: 241-243.
  6. Ashmead H.D., Graff D.J., Ashmead H.H. (1985). Intestinal absorption of metal ions and chelates. Charles C. Thomas, Springfield, IL., pp. 118-125.
  7. Bao Y.M., Choct M., Iji P.A., Bruerton K. (2007). Effect of organically complexed copper, iron, manganese and zinc on broiler performance, mineral excretion, and accumulation in tissues. J. Appl. Poultry Res. 16: 448-455.
  8. Brewer G.J. (2010). Copper toxicity in the general population. Clin. Neurophysiol., 121: 459-460. DOI: 10.1016/j.clinph.2009.12.015.10.1016/j.clinph.2009.12.01520071223
  9. Chiou P.W.S., Chen C.L., Chen K.L., Wu C.P. (1999). Effect of high dietary copper on the morphology of gastro-intestinal tract in broiler chickens. Asian Austral. J. Anim. Sci., 12: 548-553. DOI: http://dx.doi.org/10.5713/ajas.1999.548.10.5713/ajas.1999.548
  10. Cohen J.A., Kaplan M.M. (1975). Abstract of SGOT/SGPTratio in liver disease. Gastroenterol., 43, A-13/813.
  11. Ding X., Xie H., Kang Y.J. (2011). The significance of copper chelators in clinical and experimental application. J. Nutr. Biochem., 22: 301-310.
  12. Dobrowolski P., Tomaszewska E., Kurlak P., Pierzynowski S.G. (2016). Dietary 2-oxoglutarate mitigates gastrectomy-evoked structural changes in cartilage of female rats. Exp. Biol. Med., 241: 14-24.
  13. Dobryszczycka W., Owczarek H. (1981). Effects of lead, copper, and zinc on the rat’s lactate dehydrogenase in vivo and in vitro. Arch. Toxicol., 48: 21-27.
  14. Eckert G.E., Greene L.W., Carstens G.E., Ramsey W.S. (1999). Copper status of ewes fed increasing amounts of copper from copper sulfate or copper proteinate. J Anim Sci. 77: 244-249.
  15. Fields M., Ferretti R.J., Reiser S., Smith Jr. J.C. (1984). The severity of copper deficiency in rats is determined by the type of dietary carbohydrate. Exp. Biol. Med., 175: 530-537.
  16. Fry R.S., Ashwell M.S., Lloyd K.E., O'Nan A.T., Flowers W.L., Stewart K.R., Spears J.W. (2012). Amount and source of dietary copper affects small intestine morphology, duodenal lipid peroxidation, hepatic oxidative stress, and m RNAexpression of hepatic copper regulatory proteins in weanling pigs. J. Anim. Sci., 90: 3112-3119. DOI:10.2527/jas.2011-4403.10.2527/jas.2011-440322585802
  17. Fuentealba I.C., Mullins J.E., Aburto E.M., Lau J.C., Cherian G.M. (2000). Effect of age and sex on liver damage due to excess dietary copper in Fischer 344 rats. J. Toxicol. Clin. Toxicol. 7: 709-717.
  18. Han X.Y., Du W.L., Huang Q.Ch., Xu Z.R., Wang Y.Z. (2012). Changes in small intestinal morphology and digestive enzyme activity with oral administration of copper-loaded chitosan nanoparticles in rats. Biol. Trace Elem. Res., 145: 355-360.
  19. Hebert C. (1993). NTPtechnical report on the toxicity studies of cupric sulfate (CAS No. 7758-99-8) administered in drinking water and feed to F344/Nrats and B6C3F1 mice. Toxic Rep Ser.29: 1-D3.
  20. Kisielinski K., Willis S., Prescher A., Klosterhalfen B., Schumpelick V. (2002). Asimple new method to calculate small intestine absorptive surface in the rat. Clin. Exp. Med., 2: 131-135.
  21. Klevay L.M., Inman L., Johnson L.K., Lawler M., Mahalko J.R., Milne D.B., Lukaski H.C., Bolonchuk W., Sandsteadet H.H. (1984). Increased cholesterol in plasma inayoung man during experimental copper depletion. Metabolism, 33: 1112-1118.
  22. Kwiecień M., Winiarska- Mieczan A., Valverde Piedra J.L., Bujanowicz - Haraś B., Chałabis - Mazurek A. (2015 a). Effects of copper glycine chelate on liver and faecal mineral concentrations, and blood parameters in broilers. Agr. Food Sci. Finland, 24: 92-103.10.23986/afsci.49511
  23. Kwiecień M., Samolińska W., Bujanowicz - Haraś B. (2015 b). Effects of iron glycine chelate on growth, carcass characteristic, liver mineral concentrations and haematological and biochemical blood parameters in broilers. J. Anim. Physiol. An. N., 99, 6: 1184-1196. DOI: 10.1111/ jpn.12322.10.1111/jpn.1232225865671
  24. Kwiecień M., Winiarska - Mieczan A., Milczarek A., Klebaniuk R. (2016 a). Biological response of broiler chickens to decreasing dietary inclusion levels of zinc glycine chelate. Biol. Trace Elem. Res., DOI: 10.1007/s12011-016-0743-y.10.1007/s12011-016-0743-y27234252
  25. Kwiecień M., Winiarska - Mieczan A., Milczarek A., Tomaszewska E., Matras J. (2016 b). Effects of zinc glycine chelate on growth performance, carcass traits and bone quality of broiler chicken. Livest. Sci., DOI; 10.1016/j.livsci.2016.07.005.10.1016/j.livsci.2016.07.005
  26. Linder M.C., Hazegh - Azam M. (1996). Copper biochemistry and molecular biology. Am. J. Clin. Nutr., 63: 797-811.
  27. Makarski B. (2002). The influence of Cu-lysine chelat andaphytase on biological reaction of turkeys (in Polish). Rozprawy Naukowe AR Lublin. 256 pp.
  28. Makarski B., Kwiecień M., Zadura A. (2009 a). The influence of copper in the form ofalysine chelate and lactic acid on biological reaction of turkeys. I. Hematological and biochemical indices of blood and production effects of turkeys. In: Elements, the environment and human life. Pasternak K. (ed.), pp. 184-192.
  29. Makarski B., Kwiecień M., Zadura A. (2009 b). The influence of copper in the form ofalysine chelate and lactic acid on biological reaction of turkeys. II: The shares of mineral elements in the tissue and the contents of the large intestine in turkeys. In: Elements, the environment and human life. Pasternak K. (ed.), pp. 193-198.
  30. Männer K., Simon O., Schlegel P. (2006). Effects of different iron, manganese, zinc and copper sources (sulfates, chelates, glycinates) on their bioavailability in early weaned piglets. In: Tagung Schweine - und Geflügelernährung, M. Rodehutscord. 9th ed. Universität Halle-Wittenberg, Germany, 2006.
  31. Megahed M.A., Hassanin K.M.A., Youssef I.M.I., Elfghi A.B.A, Amin K.A. (2014). Alterations in plasma lipids, glutathione and homocysteine in relation to dietary copper in rats. J. Invest. Biochem., 3: 21-25. DOI: 10.5455/jib.20130716075753.10.5455/jib.20130716075753
  32. Millsa C.F., Dalgarnoa A.C., Wenhama G. (1976). Biochemical and pathological changes in tissues of Friesian cattle during the experimental induction of copper deficiency. Br. J. Nutr., 35: 309-331.
  33. National Research Council (NRC) (2005). Mineral Tolerance of Animals. Committee on Minerals and Toxic Substances in Diets and Water for Animals. Natl. Acad. Press, Council http://www.nap.edu/catalog/11309.html, 147 pp.
  34. Peňa M.M.O., Lee J., Thiele D.J. (1999). Adelicate balance: homeostatic control of copper uptake and distribution. J. Nutr., 1129: 1251-1260.
  35. Reyes J.G. (1996). Zinc transport in mammalian cells. Am. J. Physiol., 270: C401-C410.
  36. Rinaldi A.C. (2000). Meeting report - copper research at the top. Biometals, 13: 9-13.
  37. Roberts E.A., Michael L. (2008). Schilsky diagnosis and treatment of Wilson disease: An update. Hepatology, 47: 2089-2111.
  38. Salama R., Nassar A., Nafady A., Mohamed H. (2007). Anovel therapeutic drug (copper nicotinic acid complex) for non-alcoholic fatty liver. Liver Int., 27: 454-64.
  39. Świątkiewicz S., Koreleski J., Hong D.Q. (2001). The bioavailability of zinc from inorganic and organic sources in broiler chickens as affected by addition of phytase. J. Anim. Feed Sci., 10: 317-328.
  40. Tomaszewska E., Dobrowolski P., Kwiecień M., Burmańczuk N., Badzian B., Szymańczyk S., Kurlak P. (2014). Alterations of liver histomorphology in relation to copper supplementation in inorganic and organic form in growing rats. Bull. Vet. Inst. Pulawy, 58: 479-486.
  41. Tomaszewska E., Dobrowolski P., Kwiecień M. (2015). Intestinal alterations, basal hematology and biochemical parameters in adolescent rats fed different sources of dietary copper. Biol. Trace Elem. Res., DOI: 10.1007/s12011-015-0522-1.10.1007/s12011-015-0522-1483199326432448
  42. Wang Z., Cerrate S., Coto C., Yan F., Waldroup P.W. (2007). Evaluation of MINTREXcopper asasource of copper in broiler diet. Inter. J. Poultry Sci., 6: 308-313.
  43. Xia M.S., Hu C.H., Xu Z. R. (2004). Effects of copper-bearing montmorillonite on growth performance, digestive enzyme activities, and intestinal microflora and morphology of male broilers. Poultry Sci., 83: 1868-1875.
DOI: https://doi.org/10.1515/aoas-2016-0056 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 477 - 490
Submitted on: Apr 26, 2016
Accepted on: Aug 18, 2016
Published on: Apr 28, 2017
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Ewa Tomaszewska, Piotr Dobrowolski, Małgorzata Kwiecień, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.