Have a personal or library account? Click to login

References

  1. Ademark P., Larsson M., Tjerneld F., Stålbrand H. (2001). Multiple α-galactosidases from Aspergillus niger: purification, characterization and substrate specificities. Enzyme Microb. Tech., 29: 441–448.
  2. Aguilar R.F., Yoshicedo J.N., Parish C.N. (2012). Ingluviotomy tube placement for lead-induced crop stasis in the California condor (Gymnogyps californianus). J. Avian Med. Surg., 26: 176–181.
  3. Alali W., Hofacre C., Mathis G., Faltys G. (2013). Effect of essential oil compound on shedding and colonization of Salmonella enterica serovar Heidelberg in broilers. Poultry Sci., 92: 836–841.
  4. Amerah A., Plumstead P., Barnard L., Kumar A. (2014). Effect of calcium level and phytase addition on ileal phytate degradation and amino acid digestibility of broilers fed corn-based diets. Poultry Sci., 93: 906–915.
  5. Ao T., Cantor A., Pescatore A., Pierce J. (2008). In vitro evaluation of feed-grade enzyme activity at pH levels simulating various parts of the avian digestive tract. Anim. Feed Sci. Tech., 140: 462–468.
  6. Ao T., Cantor A., Pescatore A., Ford M., Pierce J., Dawson K. (2009). Effect of enzyme supplementation and acidification of diets on nutrient digestibility and growth performance of broiler chicks. Poultry Sci., 88: 111–117.
  7. Axelsson L., Chung T., Dobrogosz W., Lindgren S. (1989). Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microb. Ecol. Health D., 2: 131–136.
  8. Baas T., Thacker P. (1996). Impact of gastric pH on dietary enzyme activity and survivability in swine fed β-glucanase supplemented diets. Can. J. Anim. Sci., 76: 245–252.
  9. Backues K.A. (2015). Anseriformes. In: Zoo and wild animal medicine, Fowler M.E., Miller R.E. (eds). Louis, MO, Saunders, pp. 116–126.10.1016/B978-1-4557-7397-8.00016-5
  10. Barash I., Nitsan Z., Nir I. (1992). Metabolic and behavioural adaptation of light-bodied chicks to meal feeding. Brit. Poultry Sci., 33: 271–278.
  11. Bayer R., Bird F., Musgrave S., Chawan C. (1974). A simple method of preparation of gastroinestinal tract tissues for scanning electron microscopy. J. Anim. Sci., 38: 354–356.
  12. Beauchemin K., Colombatto D., Morgavi D., Yang W. (2003). Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. J. Anim. Sci., 81: E37–E47.
  13. Befus A.D., Johnston N., Leslie G., Bienenstock J. (1980). Gut-associated lymphoid tissue in the chicken. I. Morphology, ontogeny, and some functional characteristics of Peyer’s patches. J. Immunol., 125: 2626–2632.
  14. Bennett C., Classen H., Schwean K., Riddell C. (2002). Influence of whole barley and grit on live performance and health of turkey toms. Poultry Sci., 81: 1850–1855.
  15. Bienenstock J., McDermott M.R. (2005). Bronchus- and nasal-associated lymphoid tissues. Immunol. Rev., 206: 22–31.
  16. Boa-Amponsem K., Dunnington E., Siegel P. (1991). Genotype, feeding regimen, and diet interactions in meat chickens. 2. Feeding behavior. Poultry Sci., 70: 689–696.
  17. Bolton W. (1965). Digestion in the crop of the fowl. Brit. Poultry Sci., 6: 97–102.
  18. Bolton W., Dewar W. (1965). The digestibility of acetic, propionic and butyric acids by the fowl. Brit. Poultry Sci., 6: 103–105.
  19. Buyse J., Adelsohn D., Decuypere E., Scanes C. (1993). Diurnal-nocturnal changes in food intake, gut storage of ingesta, food transit time and metabolism in growing broiler chickens: A model for temporal control of energy balance. Brit. Poultry Sci., 34: 699–709.
  20. Campbell B., Lack E. (2011). A dictionary of birds. Poyser Monographs, UK, pp. 120.
  21. Casas I.A., Dobrogosz W.J. (2000). Validation of the probiotic concept: Lactobacillus reuteri confers broad-spectrum protection against disease in humans and animals. Microb. Ecol. Health D., 12: 247–285.
  22. Champ M., Szylit O., Raibaud P., Aïut-Abdelkader N. (1983). Amylase production by three Lactobacillus strains isolated from chicken crop. J. Appl. Bacteriol., 55: 487–493.
  23. Charles J. (1995). Organochlorine toxicity in tawny frogmouths. Proc. Australian Committee of the Association of Avian Veterinarians, Dubbo, Australia, pp. 135–141.
  24. Chikilian M., de Speroni N.B. (1996). Comparative study of the digestive system of three species of Tinamou. I. Crypturellus tataupa, Nothoprocta cinerascens, and Nothura maculosa (Aves: Tinamidae). J. Morphol., 228: 77–88.
  25. Clark H.L. (1918). Notes on the anatomy of the Cuban Trogon. Auk, 35: 286–289.
  26. Clemens E., Stevens C., Southworth M. (1975). Sites of organic acid production and pattern of digesta movement in the gastrointestinal tract of geese. J. Nutr., 105: 1341–1350.
  27. Coughlan M.P. (1985). The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol. Genet. Eng., 3: 39–110.
  28. Davies W. (1939). The composition of the crop milk of pigeons. Biochem. J., 33: 898.
  29. Dedič S. (1930). Über physiologische Formierung und Motiliät der Verdauungsorgane bei Habichten (Aster palumbarius). Fortschr. Geb. Roentgenstr., 43: 367–371.
  30. Deeming D.C. (1999). The ostrich: biology, production and health. Wallingford, UK, CABI Publishing University Press, pp. 39–42.
  31. DelHoyo J., Elliott A., Sargatal J. (2002). Handbook of the birds of the world, vol. 7. Lync Edicions, Barcelona, Spain.
  32. DelRio C.M., Schondube J.E., McWhorter T.J., Herrera L.G. (2001). Intake responses in nectar feeding birds: digestive and metabolic causes, osmoregulatory consequences, and coevolutionary effects. Am. Zool., 41: 902–915.
  33. Denbow D. (2000). Gastrointestinal anatomy and physiology. In: Sturkie’s Avian Physiology, 5th ed., Whittow G.C. (ed.). San Diego, Academic Press, pp. 299–325.10.1016/B978-012747605-6/50013-4
  34. Denbow D.M. (1994). Peripheral regulation of food intake in poultry. J. Nutr., 124, Suppl. 8: 1349S–1354S.
  35. Denstadli V., Vestre R., Svihus B., Skrede A., Storebakken T. (2006). Phytate degradation in a mixture of ground wheat and ground defatted soybeans during feed processing: Effects of temperature, moisture level, and retention time in small- and medium-scale incubation systems. J. Agr. Food Chem., 54: 5887–5893.
  36. Desmeth M., Vandeputte-Poma J. (1980). Lipid composition of pigeon cropmilk – I. Total lipids and lipid classes. Com. Biochem. Phys. B., 66: 129–133.
  37. Donalson L., McReynolds J., Kim W., Chalova V., Woodward C., Kubena L., Nisbet D., Ricke S. (2008). The influence of a fructooligosaccharide prebiotic combined with alfalfa molt diets on the gastrointestinal tract fermentation, Salmonella enteritidis infection, and intestinal shedding in laying hens. Poultry Sci., 87: 1253–1262.
  38. Doneley B. (2010). The digestive tract. In: Avian medicine and surgery in practice: Companion and aviary birds. Manson Publishing Ltd., London, UK, pp. 16–19.
  39. Dorrestein G.M. (2009). Passerines and exotic softbills. In: Handbook of avian medicine, Tully T.N., Dorrestein G.M., Jones A.K. (eds), Elsevier/Saunders, pp.145–179.
  40. Dubos R., Schaedler R.W., Costello R., Hoet P. (1965). Indigenous, normal, and autochthonous flora of the gastrointestinal tract. J. Exp. Med., 122: 67–76.
  41. Duke G. (1986). Alimentary canal: secretion and digestion, special digestive functions, and absorption. In: Avian Physiology, Sturkie P.D. (ed.). Springer-Verlag, New York, pp. 289–302.10.1007/978-1-4612-4862-0_12
  42. Duke G.E. (1989). Avian gastrointestinal motor function. In: Handbook of physiology – the gastrointestinal system, Wood J.T. (ed.). Oxford University Press, New York, USA, pp. 1283–1300.10.1002/cphy.cp060135
  43. Duke G.E. (1997). Gastrointestinal physiology and nutrition in wild birds. Proc. Nutr. Soc., 56: 1049–1056.
  44. Eber G. (1956). Vergleichende Untersuchungen über die Ernährung einiger Finkenvögel. Biol. Abh., 13: 1–60.
  45. El-Ziney M., Van Den Tempel T., Debevere J., Jakobsen M. (1999). Application of reuterin produced by Lactobacillus reuteri 12002 for meat decontamination and preservation. J. Food Protect., 62: 257–261.
  46. Farner D.S. (1942). The hydrogen ion concentration in avian digestive tracts. Poultry Sci., 21: 445–450.
  47. Farner D.S. (1960). Digestion and the digestive system. In: Biology and comparative physiology of birds, Vol. 1, Marschall H.J. (ed.). Academic Press, New York, USA, pp. 411–467.10.1016/B978-1-4832-3142-6.50016-1
  48. Fisher H., Weiss H.S. (1956). Feed consumption in relation to dietary bulk and energy level: The effect of surgical removal of the crop. Poultry Sci., 35: 418–423.
  49. Fonseca B.B., Beletti M.E., Silva M.S.d., Silva P.L.D., Duarte I.N., Rossi D.A. (2010). Microbiota of the cecum, ileum morphometry, pH of the crop and performance of broiler chickens supplemented with probiotics. Rev. Bras. Zootec., 39: 1756–1760.
  50. Frelinger J.A. (1971). Maternally derived transferrin in pigeon squabs. Science, 171: 1260–1261.
  51. Freter R. (1969). Studies of mechanism of action of intestinal antibody in experimental cholera. Tex. Rep. Biol. Med., 299.
  52. Fujisawa T., Benno Y., Yaeshima T., Mitsuoka T. (1992). Taxonomic study of the Lactobacillus acidophilus group, with recognition of Lactobacillus gallinarum sp. nov. and Lactobacillus johnsonii sp. nov. and synonymy of Lactobacillus acidophilus group A3 (Johnson et al., 1980) with the type strain of Lactobacillus amylovorus (Nakamura, 1981). Int. J. Syst. Bacteriol., 42: 487–491.
  53. Fuller R. (1977). The importance of lactobacilli in maintaining normal microbial balance in the crop. Brit. Poultry Sci., 18: 85–94.
  54. Fuller R. (2001). The chicken gut microflora and probiotic supplements. J. Poultry Sci., 38: 189–196.
  55. Fuller R., Brooker B. (1974). Lactobacilli which attach to the crop epithelium of the fowl. Am. J. Cli. Nutr., 27: 1305–1312.
  56. Gallego M., Olah I., DelCacho E., Glick B. (1993). Anti-S-100 antibody recognizes ellipsoid-associated cells and other dendritic cells in the chicken spleen. Dev. Comp. Immunol., 17: 77–83.
  57. Gelis S. (2006). Evaluating and treating the gastrointestinal system. In: Clinical avian medicine, vol. 1, Harrison G.J., Lightfoot T.L. (eds). Palm Beach, Spix Publishing Inc., pp. 411–440.
  58. Giannenas I., Papaneophytou C., Tsalie E., Pappas I., Triantafillou E., Tontis D., Kontopidis G. (2014). Dietary supplementation of benzoic acid and essential oil compounds affects buffering capacity of the feeds, performance of turkey poults and their antioxidant status, pH in the digestive tract, intestinal microbiota and morphology. Asian Australas. J. Anim. Sci., 27: 225–236.
  59. Gillespie M.J., Stanley D., Chen H., Donald J.A., Nicholas K.R., Moore R.J., Crowley T.M. (2012). Functional similarities between pigeon ‘milk’ and mammalian milk: induction of immune gene expression and modification of the microbiota. PLoS ONE, 7: e48363.
  60. Glick B. (2000). Immunophysiology. In: Sturkie’s Avian Physiology, Whittow G.C. (ed.). Academic Press, San Diego, pp. 657–670.10.1016/B978-012747605-6/50027-4
  61. Glick B., Olah I. (1981). Gut-associated-lymphoid tissue of the chicken. Scan. Electron Micros., 3: 99–108.
  62. Godoy-Vitorino F., Ley R.E., Gao Z., Pei Z., Ortiz-Zuazaga H., Pericchi L.R., Garcia-Amado M.A., Michelangeli F., Blaser M.J., Gordon J.I. (2008). Bacterial community in the crop of the hoatzin, a neotropical folivorous flying bird. Appl. Environ. Microb., 74: 5905–5912.
  63. Godoy-Vitorino F., Goldfarb K.C., Brodie E.L., Garcia-Amado M.A., Michelangeli F., Domínguez-Bello M.G. (2010). Developmental microbial ecology of the crop of the folivorous hoatzin. ISME J., 4: 611–620.
  64. Godoy-Vitorino F., Goldfarb K.C., Karaoz U., Leal S., Garcia-Amado M.A., Hugenholtz P., Tringe S.G., Brodie E.L., Dominguez-Bello M.G. (2012). Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows. ISME J., 6: 531–541.
  65. Gordon R., Roland D. (1997). The influence of environmental temperature on in vivo limestone solubilization, feed passage rate, and gastrointestinal pH in laying hens. Poultry Sci., 76: 683–688.
  66. Goudswaard J., van der Donk J., van der Gaag I., Noordzij A. (1979). Peculiar IgA transfer in the pigeon from mother to squab. Dev. Comp. Immunol., 3: 307–319.
  67. Grajal A. (1995). Structure and function of the digestive tract of the hoatzin (Opisthocomus hoazin): a folivorous bird with foregut fermentation. Auk, 112: 20–28.
  68. Grajal A., Strahl S.D., Parra R., Dominguez M.G., Neher A. (1989). Foregut fermentation in the hoatzin, a neotropical leaf-eating bird. Science, 245: 1236–1238.
  69. Greiner R., Konietzny U. (2011). Phytases: Biochemistry, enzymology and characteristics relevant to animal feed use. In: Enzymes in farm animal nutrition, Bedford M.R., Partridge G.G. (eds). CAB Intl. Publishing, Oxfordshire, UK, pp. 96–128.
  70. Groebbels F. (1932). Der Vogel: Atmungswelt und Nahrungswelt. Berlin: Verlag von Gebruder, Borntraeger.
  71. Guareschi C. (1936). Necessita di fattori alimentari materni per l’accrescimento del giovanissimi colombi. Boll. Soc. Ital. Biol. Sper., 11: 411–412.
  72. Hammons S., Oh P.L., Martínez I., Clark K., Schlegel V.L., Sitorius E., Scheideler S.E., Walter J. (2010). A small variation in diet influences the Lactobacillus strain composition in the crop of broiler chickens. Syst. Appl. Microbiol., 33: 275–281.
  73. Hargis B., Caldwell D., Brewer R., Corrier D., De Loach J. (1995). Evaluation of the chicken crop as a source of Salmonella contamination for broiler carcasses. Poultry Sci., 74: 1548–1552.
  74. Hegde S. (1973). Composition of pigeon milk and its effect on growth in chicks. Indian J. Exp. Biol., 11: 238–239.
  75. Hendriks W., O’Conner S., Thomas D., Rutherfurd S., Taylor G., Guilford W. (2000). Nutrient composition of the crop contents of growing and adult grey-faced petrels (Pterodroma macroptera): A preliminary investigation. J. Roy. Soc. New Zeal., 30: 105–111.
  76. Henry K., MacDonald A., Magee H. (1933). Observations on the functions of the alimentary canal in fowls. J. Exp. Biol., 10: 153–171.
  77. Herpol C., van Grembergen G. (1967). La signification du pH dans le tube digestif de Gallus domesticus. Ann. Biol. Anim. Bioch., 7: 33–38.
  78. Hilmi H.T.A., Surakka A., Apajalahti J., Saris P.E. (2007). Identification of the most abundant Lactobacillus species in the crop of 1- and 5-week-old broiler chickens. Appl. Environ. Microb., 73: 7867–7873.
  79. Hinton A., Buhr R., Ingram K. (2000 a). Physical, chemical, and microbiological changes in the crop of broiler chickens subjected to incremental feed withdrawal. Poultry Sci., 79: 212–218.10.1093/ps/79.2.21210735749
  80. Hinton A., Buhr R., Ingram K., (2000 b). Reduction of Salmonella in the crop of broiler chickens subjected to feed withdrawal. Poultry Sci., 79: 1566–1570.10.1093/ps/79.11.156611092326
  81. Hinton Jr. A., Corrier D.E., Spates G.E., Norman J.O., Ziprin R.L., Beier R.C., DeLoach J.R. (1990). Biological control of Salmonella typhimurium in young chickens. Avian Dis., 34: 626–633.
  82. Hodgkiss J.P. (1981). Distension-sensitive receptors in the crop of the domestic fowl (Gallus domesticus). Comp. Biochem. Phys. A., 70: 73–78.
  83. Holt P.S., Vaughn L.E., Gast R.K., Stone H.D. (2002). Development of a lavage procedure to collect crop secretions from live chickens for studying crop immunity. Avian Pathol., 31: 589–592.
  84. Holt P.S., Vaughn L.E., Moore R.W., Gast R.K. (2006). Comparison of Salmonella enterica serovar Enteritidis levels in crops of fed or fasted infected hens. Avian Dis., 50: 425–429.
  85. Hong Y.H., Song W., Lee S., Lillehoj H. (2012). Differential gene expression profiles of β-defensins in the crop, intestine, and spleen using a necrotic enteritis model in 2 commercial broiler chicken lines. Poultry Sci., 91: 1081–1088.
  86. Horrocks M., Salter J., Braggins J., Nichol S., Moorhouse R., Elliott G. (2008). Plant microfossil analysis of coprolites of the critically endangered kakapo (Strigops habroptilus) parrot from New Zealand. Rev. Palaeobot. Palyno., 149: 229–245.
  87. Houston D., Copsey J. (1994). Bone digestion and intestinal morphology of the Bearded Vulture. J. Raptor Res., 28: 73–78.
  88. Hunter J. (1840). Observations on certain parts of the animal oeconomy: Inclusive of several papers from the philosophical transactions. Etc. New Orleans: Haswell, Barrington, and Haswell.
  89. Iankov I.D., Petrov D.P., Mladenov I.V., Haralambieva I.H., Mitov I.G. (2002). Lipopolysaccharide-specific but not anti-flagellar immunoglobulin A monoclonal antibodies prevent Salmonella enterica serotype Enteritidis invasion and replication within HEp-2 cell monolayers. Infect. Immun., 70: 1615–1618.
  90. Irving L., West G.C., Peyton L.J. (1967). Winter feeding program of Alaska willow ptarmigan shown by crop contents. Condor, 69: 69–77.
  91. Jack R.W., Tagg J.R., Ray B. (1995). Bacteriocins of gram-positive bacteria. Microbiol. Rev., 59: 171–200.
  92. Jackson S., Duke G.E. (1995). Intestine fullness influences feeding behaviour and crop filling in the domestic turkey. Physiol. Behav., 58: 1027–1034.
  93. Janczyk P., Halle B., Souffrant W. (2009). Microbial community composition of the crop and ceca contents of laying hens fed diets supplemented with Chlorella vulgaris. Poultry Sci., 88: 2324–2332.
  94. Jensen M.A., Webster J.A., Straus N. (1993). Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. App. Environ. Microb., 59: 945–952.
  95. Johnston G.B. (1999). Comparative anatomy of Musophagidae (Turacos). AFA Watchbird, 26: 43–45.
  96. Józefiak D., Sip A. (2013). Bacteriocins in poultry nutrition – a review. Ann. Anim. Sci., 13: 449–462.
  97. Józefiak D., Rutkowski A., Martin S. (2004). Carbohydrate fermentation in the avian ceca: a review. Anim. Feed Sci. Tech., 113: 1–15.
  98. Józefiak D., Kaczmarek S., Rutkowski A., Józefiak A., Jensen B., Engberg R. (2005). Fermentation in broiler chicken gastrointestinal tract as affected by high dietary inclusion of barley and beta-glucanase supplementation. J. Anim. Feed Sci., 14: 695.
  99. Józefiak D., Rutkowski A., Jensen B.B., Engberg R.M. (2007). Effects of dietary inclusion of triticale, rye and wheat and xylanase supplementation on growth performance of broiler chickens and fermentation in the gastrointestinal tract. Anim. Feed Sci. Tech., 132: 79–93.
  100. Józefiak D., Kaczmarek S., Rutkowski A. (2008). A note on the effects of selected prebiotics on the performance and ileal microbiota of broiler chickens. J. Anim. Feed Sci., 17: 392–397.
  101. Józefiak D., Kaczmarek S., Rutkowski A. (2010). The effects of benzoic acid supplementation on the performance of broiler chickens. J. Anim. Physiol. An. N., 94: 29–34.
  102. Józefiak D., Sip A., Rawski M., Rutkowski A., Kaczmarek S., Hojberg O., Jensen B.B., Engberg R.M. (2011). Dietary divercin modifies gastrointestinal microbiota and improves growth performance in broiler chickens. Brit. Poultry Sci., 52: 492–499.
  103. Józefiak D., Sip A., Rutkowski A., Rawski M., Kaczmarek S., Wołuń-Cholewa M., Engberg R.M., Højberg O. (2012). Lyophilized Carnobacterium divergens AS7 bacteriocin preparation improves performance of broiler chickens challenged with Clostridium perfringens. Poultry Sci., 91: 1899–1907.
  104. Józefiak D., Kierończyk B., Juśkiewicz J., Zduńczyk Z., Rawski M., Długosz J., Sip A., Højberg O. (2013). Dietary nisin modulates the gastrointestinal microbial ecology and enhances growth performance of the broiler chickens. PloSone, 8: e85347.
  105. Józefiak D., Kierończyk B., Rawski M., Hejdysz M., Rutkowski A., Engberg R.M., Højberg O. (2014). Clostridium perfringens challenge and dietary fat type affect broiler chicken performance and fermentation in the gastrointestinal tract. Animal., 8: 1–11.
  106. Karasow W.H., Phan D., Diamond J.M., Carpenter F.L. (1986). Food passage and intestinal nutrient absorption in hummingbirds. Auk, 103: 453–464.
  107. Kimura N., Mimura F., Nishida S., Kobayashi A., Mitsuoka T. (1976). Studies on the relationship between intestinal flora and cecal coccidiosis in chicken. Poultry Sci., 55: 1375–1383.
  108. King A.S., McLelland J. (1984). Birds. Their Structure and Function. London, Baillière-Tindall, pp. 84–109.
  109. Kirk Baer C. (1999). Comparative nutrition and feeding considerations of young Columbidae. In: Zoo and wild animal medicine – Current therapy 4, Fowler M.E., Miller R.E. (eds). W.S. Saunders, Philadelphia, USA, pp. 269–277.
  110. Klasing K.C. (1999). Avian gastrointestinal anatomy and physiology. Semin. Avian Exotic Pet Med., 8: 42–50.
  111. Knarreborg A., Simon M.A., Engberg R.M., Jensen B.B., Tannock G.W. (2002). Effects of dietary fat source and subtherapeutic levels of antibiotic on the bacterial community in the ileum of broiler chickens at various ages. Appl. Environ. Microb., 68: 5918–5924.
  112. Kobryń H., Kobryńczuk F. (2004). Apparatus digestorius. In: Animal anatomy, vol. 3. (in Polish). Scientific Publishing Company PWN, Warsaw, pp. 367–380.
  113. Kotarski S.F., Waniska R.D., Thurn K.K. (1992). Starch hydrolysis by the ruminal microflora. J. Nutr., 122: 178–190.
  114. Kubena L., Byrd J., Moore R., Ricke S., Nisbet D. (2005). Effects of drinking water treatment on susceptibility of laying hens to Salmonella enteritidis during forced molt. Poultry Sci., 84: 204–211.
  115. Lan G.Q., Abdullah N., Jalaludin S., Ho Y.W. (2010). In vitro and in vivo enzymatic dephosphorylation of phytate in maize–soya bean meal diets for broiler chickens by phytase of Mitsuokella jalaludinii. Anim. Feed Sci. Tech., 158: 155–164.
  116. Lang E.M. (1963). Flamingoes raise their young on a liquid containing blood. Experientia, 19: 532–533.
  117. Langenfeld M.S. (1992). Systema digestorium, s. apparatus digestorius. In: Chicken anatomy (in Polish). Scientific Publishing Company PWN, pp. 91–117.
  118. Lauer E., Helming C., Kandler O. (1980). Heterogeneity of the species Lactobacillus acidophilus (Moro) Hansen and Moquot as revealed by biochemical characteristics and DNA-DNA hybridisation. Zbl. Bakt. Mik. Hyg. I. C., 1: 150–168.
  119. Lauková A., Mareková M., Javorský P. (1993). Detection and antimicrobial spectrum of a bacteriocin-like substance produced by Enterococcus faecium CCM4231. Lett. Appl. Microbiol., 16: 257–260.
  120. Leasure E., Foltz V. (1940). Experiments on absorption in the crop of chickens. J. Am. Vet. Med. Assoc., 96: 236.
  121. Leger J.S., Vince M., Jennings J., McKerney E., Nilson E. (2012). Toucan hand feeding and nestling growth. Vet. Clin. N. Am-Exotic., 15: 183–193.
  122. Liebert F., Wecke C., Schoner F. (1993). Phytase activities in different gut contents of chickens as dependent on levels of phosphorus and phytase supplementations. Proc. 1st European Symposium Enzymes in Animal Nutrition, pp. 202–205.
  123. López-Calleja M.V., Bozinovic F. (2000). Energetics and nutritional ecology of small herbivorous birds. Rev. Chil. Hist. Nat., 73: 411–420.
  124. Lumeij J.T. (1994). Gastroenterology. In: Avian medicine principles and application, Ritchie B.W., Harrison G.J., Harrison L.R. (eds). Wingers, Lake Worth, FL, pp. 482–521.
  125. Mabelebele M., Alabi O., Ngambi J., Norris D., Ginindza M. (2014). Comparison of gastrointestinal tracts and pH values of digestive organs of Ross 308 broiler and indigenous venda chickens fed the same diet. Asian J. Anim. Vet. Adv., 9: 71–76.
  126. Mackie R., White B., Isaacson R. (1997). Gastrointestinal microbes and host interactions. In: Gastrointestinal microbiology, vol. 2. Chapman & Hall, New York, USA.
  127. Madsen V., Valkiūnas G., Iezhova T.A., Mercade C., Sanchez M., Osorno J.L. (2007). Testosterone levels and gular pouch coloration in courting magnificent frigatebird (Fregata magnificens): variation with age-class, visited status and blood parasite infection. Horm. Behav., 51: 156–163.
  128. Matsumoto R., Hashimoto Y. (2000). Distribution and developmental change of lymphoid tissues in the chicken proventriculus. J. Vet. Med. Sci., 62: 161–167.
  129. May J., Deaton J. (1989). Digestive tract clearance of broilers cooped or deprived of water. Poultry Sci., 68: 627–630.
  130. Mayr G. (2010). Phylogenetic relationships of the paraphyletic ‘caprimulgiform’ birds (nightjars and allies). J. Zool. Syst. Evol. Res., 48: 126–137.
  131. McCain S. (2015). Charadriiformes. In: Zoo and wild animal medicine, Fowler M.E., Miller R.E. (eds). Louis, MO, Saunders, pp. 112–115.10.1016/B978-1-4557-7397-8.00015-3
  132. McLelland J. (1979). Digestive system. In: Form and function in birds, vol. 1, King A.S., McLelland J. (eds). Academic Press, London, pp. 69–181.
  133. McLelland J. (1990). Digestive system. In: A colour atlas of avian anatomy. Wolfe Medical Publications Ltd., London, pp. 47–65.
  134. McLelland J. (1993). Apparatus digestorius [systema alimentarium]. In: Handbook of avian anatomy: nomina anatomica avium, Baumel J., King A.S., Breazile J.E., Evans H.E., Berge J.C.V. (eds.). Cambrigde, MA: Publications of the Nuttall Ornithological Club, USA, no. 23, pp. 301–328.
  135. Mekonnen H., Mulatu D., Kelay B., Berhan T. (2010). Assessment of the nutritional status of indigenous scavenging chickens in Ada’a district, Ethiopia. Trop. Anim. Health Pro., 42: 123–130.
  136. Michetti P., Mahan M., Slauch J., Mekalanos J., Neutra M. (1992). Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium. Infect. Immun., 60: 1786–1792.
  137. Michetti P., Porta N., Mahan M.J., Slauch J.M., Mekalanos J.J., Blum A., Kraehenbuhl J.-P., Neutra M.R. (1994). Monoclonal immunoglobulin A prevents adherence and invasion of polarized epithelial cell monolayers by Salmonella typhimurium. Gastroenterology, 107: 915–923.
  138. Miskelly C.M., Taylor G.A., Gummer H., Williams R. (2009). Translocations of eight species of burrow-nesting seabirds (genera Pterodroma, Pelecanoides, Pachyptila and Puffinus: Family Procellariidae). Biol. Conserv., 142: 1965–1980.
  139. Mongin P. (1976). Composition of crop and gizzard contents in the laying hen. Brit. Poultry Sci., 17: 499–507.
  140. Montaner A.D., Beltzer A., Carlo E.D., Mosso E. (1997). Anatomía macroscópica e histológica de esófago, estómago, intestino y recto de la garcita azulada, Buturoides striatus (Aves: Ardeidae). Rev. Ceres., 44: 83–93.
  141. Montville T., Winkowski K., Ludescher R. (1995). Models and mechanisms for bacteriocin action and application. Int. Dairy J., 5: 797–814.
  142. Moore R., Park S., Kubena L., Byrd J., McReynolds J., Burnham M., Hume M., Birkhold S., Nisbet D., Ricke S. (2004). Comparison of zinc acetate and propionate addition on gastrointestinal tract fermentation and susceptibility of laying hens to Salmonella enteritidis during forced molt. Poultry Sci., 83: 1276–1286.
  143. Mwalusanya N., Katule A., Mutayoba S., Minga U., Mtambo M., Olsen J. (2002). Nutrient status of crop contents of rural scavenging local chickens in Tanzania. Brit. Poultry Sci., 43: 64–69.
  144. Nielsen B.L. (2004). Behavioural aspects of feeding constraints: do broilers follow their gut feelings? App. Anim. Behav. Sci., 86: 251–260.
  145. Niethammer G. (1933). Anatomisch-histologische und physiologische Untersuchungen über die Kropfbildung der Vögel. Z. Wiss. Zool. Abt., 144: 12–101.
  146. Oakley B.B., Lillehoj H.S., Kogut M.H., Kim W.K., Maurer J.J., Pedroso A., Lee M.D., Collett S.R., Johnson T.J., Cox N.A. (2014). The chicken gastrointestinal microbiome. FEMS Microbiol. Lett., 360: 100–112.
  147. Olah I., Glick B. (1979). Structure of the germinal centers in the chicken caecal tonsil: light and electron microscopic and autoradiographic studies. Poultry Sci., 58: 195–210.
  148. Olah I., Glick B., Taylor R. (1984). Meckel’s diverticulum. II. A novel lymphoepithelial organ in the chicken. Anat. Rec., 208: 253–263.
  149. Olah I., Kupper A., Kittner Z. (1996). The lymphoid substance of the chicken’s Harderian gland is organized in two histologically distinct compartments. Microsc. Res. Techniq., 34: 166–176.
  150. Onyango E., Bedford M., Adeola O. (2005). Phytase activity along the digestive tract of the broiler chick: A comparative study of an Escherichia coli-derived and Peniophora lycii phytase. Can. J. Anim. Sci., 85: 61–68.
  151. Pace D., Landolt P., Mussehl F. (1952). The effect of pigeon crop-milk on growth in chickens. Growth, 16: 279–285.
  152. Pacheco M.A., García-Amado M.A., Bosque C., Domínguez-Bello M.G. (2004). Bacteria in the crop of the seed-eating green-rumped parrotlet. Condor, 106: 139–143.
  153. Padilla L.R. (2015). Gaviiformes, Podicipediformes, and Procellariformes (Loons, Grebes, Petrels, and Albatrosses) In: Zoo and wild animal medicine, Fowler M.E., Miller R.E. (eds). Louis, MO, Saunders, pp. 89–96.
  154. Ponte P., Lordelo M., Guerreiro C., Soares M., Mourao J., Crespo J., Crespo D., Prates J., Ferreira L., Fontes C. (2008). Crop β-glucanase activity limits the effectiveness of a recombinant cellulase used to supplement a barley-based feed for free-range broilers. Brit. Poultry Sci., 49: 347–359.
  155. Prévost J., Vilter V., Françaises E.P. (1963). Histologie de la secretion oesophagienne du manchot empereur. Proc. XIIIth International Ornithological Congress, pp. 1085–1094.
  156. Pritchard P.J. (1972). Digestion of sugars in the crop. Comp. Biochem. Physiol. A., 43: 195–205.
  157. Ptak A., Bedford M.R., Świątkiewicz S., Żyła K., Józefiak D. (2015). Phytase modulates ileal microbiota and enhances growth performance of the broiler chickens. PloS one, 10: e0119770.
  158. Pye G. (2003). Apodiformes and coliiformes (Swifts, Swiftlets, Mousebirds). In: Zoo and wild animal medicine, Fowler M.E., Miller R.E. (eds). Louis, MO, Saunders, pp. 239–245.
  159. Quesenberry K.E., Hillyer E.V. (1994). Supportive care and emergency therapy. In: Avian medicine: principles and application. Ritchie B.W., Harrison G.J., Harrison L.R. (eds). Lake Worth, FL: Wingers, pp. 382, 416.
  160. Ramirez G., Sarlin L., Caldwell D., Yezak C., Hume M., Corrier D., Hargis B. (1997). Effect of feed withdrawal on the incidence of Salmonella in the crops and ceca of market age broiler chickens. Poultry Sci., 76: 654–656.
  161. Redrobe S. (2015). Pelecaniformes (Pelicans, Tropicbirds, Cormorants, Frigatebirds, Anhingas, Gannets). In: Zoo and wild animal medicine, Fowler M.E., Miller R.E. (eds). Louis, MO, Saunders, pp. 96–99.10.1016/B978-1-4557-7397-8.00012-8
  162. Richards M., Proszkowiec-Weglarz M. (2007). Mechanisms regulating feed intake, energy expenditure, and body weight in poultry. Poultry Sci., 86: 1478–1490.
  163. Richardson A. (1970). The role of the crop in the feeding behaviour of the domestic chicken. Anim. Behav., 18: 633–639.
  164. Riddle O., Bates R.W., Dykshorn S.W. (1933). The preparation, identification and assay of prolactin – a hormone of the anterior pituitary. Am. J. Physiol., 105: 191–216.
  165. Rubio-García M., Rubio-Lozano M., Ponce-Alquicira E., Rosario-Cortes C., Nava G., Castañeda-Serrano M. (2015). Improving appearance and microbiologic quality of broiler carcasses with an allostatic modulator. Poultry Sci., 94: 1957–1963.
  166. Sacranie A., Svihus B., Denstadli V., Moen B., Iji P., Choct M. (2012). The effect of insoluble fiber and intermittent feeding on gizzard development, gut motility, and performance of broiler chickens. Poultry Sci., 91: 693–700.
  167. Salminen S., Deighton M., Gorbach S., Wright A.V. (1993). Lactic acid bacteria in health and disease. In: Lactic acid bacteria, Salminen S., Wright A.V. (eds). Mercel Dekker, Inc. New York, pp. 199–225.
  168. Savory C.J. (1985). An investigation into the role of the crop in control of feeding in Japanese quail and domestic fowls. Physiol. Behav., 35: 917–928.
  169. Schultz D.J. (2003). Columbiformes (pigeons, doves). In: Zoo and wild animal medicine, 5th ed., Fowler M.E., Miller R.E. (eds). Louis, MO, Saunders, pp. 180–187.
  170. Seo K., Holt P., Vaughn L., Gast R., Stone H. (2003). Detection of Salmonella enteritidis-specific immunoglobulin A antibodies in crop samples from chickens infected with Salmonella enteritidis. Poultry Sci., 82: 67–70.
  171. Shetty S., Hegde S. (1993). Pigeon milk: a new source of growth factor. Experientia, 49: 925–928.
  172. Shetty S., Hegde S., Bharathi L. (1992). Purification of a growth factor from pigeon milk. Biochim. Biophys. Acta BBA-Gen. Subjects, 1117: 193–198.
  173. Sibbald I., Hutcheson L.M. (1959). The inability of the crop to convert β-carotene to vitamin A within four hours. Poultry Sci., 38: 698–700.
  174. Sibley C.G., Ahlquist J.E. (1990). Phylogeny and classification of birds: a study in molecular evolution. Yale University Press, New Haven, Connecticut.
  175. Slater P. (1974). The temporal pattern of feeding in the zebra finch. Anim. Behav., 22: 506–515.
  176. Smith J.A. (2015). Passeriformes (Songbirds, Perching Birds). In: Zoo and wild animal medicine, Fowler M.E., Miller R.E. (eds). Louis, MO, Saunders, pp. 236–246.10.1016/B978-1-4557-7397-8.00031-1
  177. Soedarmo D., Kare M.R., Wasserman R. (1961). Observations on the removal of sugar from the mouth and the crop of the chicken. Poultry Sci., 40: 123–128.
  178. Stelwagen K., Carpenter E., Haigh B., Hodgkinson A., Wheeler T. (2009). Immune components of bovine colostrum and milk. J. Anim. Sci., 87: 3–9.
  179. Stern N., Svetoch E., Eruslanov B., Perelygin V., Mitsevich E., Mitsevich I., Pokhilenko V., Levchuk V., Svetoch O., Seal B. (2006). Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrob. Agents Ch., 50: 3111–3116.
  180. Stevens C.E., Hume I.D. (1998). Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol. Rev., 78: 393–427.
  181. Stevens C.E., Hume I.D. (2004). Comparative physiology of the vertebrate digestive system. Cambridge University Press, New York.
  182. Strompfova V., Laukova A. (2007). In vitro study on bacteriocin production of Enterococci associated with chickens. Anaerobe, 13: 228–237.
  183. Studer-Thiersch A. (1967). Beiträge zur Brutbiologie der Flamingos (Gattung phoenicopterus). Zool. Gart., 34: 154–229.
  184. Sturkie P. (1976 a). Alimentary canal: anatomy, prehension, deglutition, feeding, drinking, passage of ingesta, and motility. In: Avian physiology, Sturkie P.D. (ed.). Springer-Verlag, New York, NY, pp. 185–195.10.1007/978-3-642-96274-5_9
  185. Sturkie P. (1976 b). Secretion of gastric and pancreatic juice, pH of tract, digestion in alimentary canal, liver and bile, and absorption. In: Avian physiology, Sturkie P.D. (ed.). Springer-Verlag, New York, NY, pp. 196–209.10.1007/978-3-642-96274-5_10
  186. Svihus B. (2014). Function of the digestive system. J. Appl. Poultry Res., 23: 306–314.
  187. Svihus B., Hetland H., Choct M., Sundby F. (2002). Passage rate through the anterior digestive tract of broiler chickens fed on diets with ground and whole wheat. Brit. Poultry Sci., 43: 662–668.
  188. Svihus B., Sacranie A., Denstadli V., Choct M. (2010). Nutrient utilization and functionality of the anterior digestive tract caused by intermittent feeding and inclusion of whole wheat in diets for broiler chickens. Poultry Sci., 89: 2617–2625.
  189. Svihus B., Lund V., Borjgen B., Bedford M., Bakken M. (2013). Effect of intermittent feeding, structural components and phytase on performance and behaviour of broiler chickens. Brit. Poultry Sci., 54: 222–230.
  190. Szarski H., Grodziński Z. (1987). Digestive system. In: Comparative anatomy of vertebrates (in Polish). Scientific Publishing Company PWN, Warsaw, pp. 538–539.
  191. Taylor M. (2000). Anatomy and physiology of the gastrointestinal tract for the avian practitioner. In: Birds, Post Grad Found in Vet. Sci. Univ. of Sydney, Aus. Proc., 334, pp. 107–113.
  192. Taylor M., Murray M.J. (1999). Endoscopic examination and therapy of the avian gastrointestinal tract. Semin. Avian Exot. Pet Med., 8: 110–114.
  193. Teekell R., Knox E., Watts A. (1967). Absorption and protein biosynthesis of threonine in the chick. Poultry Sci., 46: 1185–1189.
  194. Thompson J.L., Hinton M. (1997). Antibacterial activity of formic and propionic acids in the diet of hens on Salmonellas in the crop. Brit. Poultry Sci., 38: 59–65.
  195. Tully T.N. (2009). Ratites. In: Handbook of avian medicine, Tully T.N., Dorrestein G.M., Jones A.K. (eds). Elsevier/Saunders, pp. 228–233.10.1016/B978-0-7020-2874-8.00011-0
  196. Van Dijk A., Veldhuizen E.J., Kalkhove S.I., Tjeerdsma-van Bokhoven J.L., Romijn R.A., Haagsman H.P. (2007). The β-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens. Antimicrob. Agents Ch., 51: 912–922.
  197. Van Immerseel F., Rood J.I., Moore R.J., Titball R.W. (2009). Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol., 17: 32–36.
  198. Wagstrom E.A., Yoon K.-J., Zimmerman J.J. (2000). Immune components in porcine mammary secretions. Viral Immunol., 13: 383–397.
  199. Waite D.W., Deines P., Taylor M.W. (2012). Gut microbiome of the critically endangered New Zealand parrot, the kakapo (Strigops habroptilus). PloS one, 7: e35803-e35803.
  200. Waite D.W., Taylor M.W. (2015). Exploring the avian gut microbiota: current trends and future directions. Front. Microbiol., 6: 673.
  201. Wally J., Buchanan S.K. (2007). A structural comparison of human serum transferrin and human lactoferrin. Biometals, 20: 249–262.
  202. Wehner G., Harrold R. (1982). Crop volume of chickens as affected by body size, sex, and breed. Poultry Sci., 61: 598–600.
  203. Wheelwright N.T. (1983). Fruits and the ecology of Resplendent Quetzals. Auk, 100: 286–301.
  204. Woodward C., Kwon Y., Kubena L., Byrd J., Moore R., Nisbet D., Ricke S. (2005). Reduction of Salmonella enterica serovar Enteritidis colonization and invasion by an alfalfa diet during molt in Leghorn hens. Poultry Sci., 84: 185–193.
  205. Yeoman C.J., Chia N., Jeraldo P., Sipos M., Goldenfeld N.D., White B.A. (2012). The microbiome of the chicken gastrointestinal tract. Anim. Health Res. Rev., 13: 89–99.
  206. Yildirim Z., Johnson M.G. (1998). Characterization and antimicrobial spectrum of bifidocin B, a bacteriocin produced by Bifidobacterium bifidum NCFB 1454. J. Food Protect., 61: 47–51.
  207. Zheng X., Martin L.D., Zhou Z., Burnham D.A., Zhang F., Miao D. (2011). Fossil evidence of avian crops from the Early Cretaceous of China. P. Natl. Acad. Sci., 108: 15904–15907.
  208. Ziswiler V., Farner D.S. (1972). Digestion and the digestive system. In: Avian biology, vol. II, Farner D., King J., Parkes K. (eds). Academic Press, New York, London, pp. 343–430.10.1016/B978-0-12-249402-4.50015-2
DOI: https://doi.org/10.1515/aoas-2016-0032 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 653 - 678
Submitted on: Feb 13, 2016
Accepted on: Apr 20, 2016
Published on: Aug 2, 2016
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Bartosz Kierończyk, Mateusz Rawski, Jakub Długosz, Sylwester Świątkiewicz, Damian Józefiak, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.