Have a personal or library account? Click to login

17. A 22:6 n-3 Rich Supplement Affects the Ruminal Microbial Community and Fermentation and Alters Plasma Metabolites

Open Access
|May 2016

References

  1. AOAC, Official Methods of Analysis (16th ed.). Association of Official Analytical Chemists, Arlington, VA (1990).
  2. Belenguer A., Toral P.G., Frutos P., Hervás G. (2010). Changes in the rumen bacterial community in response to sunflower oil and fish oil supplements in the diet of dairy sheep. J. Dairy Sci., 93: 3275-3286.
  3. Boeckaert C., Fievez V., Van Hecke D., Verstraete W., Boon N. (2007). Changes in rumen biohydrogenation intermediates and ciliate protozoa diversity after algae supplementation to dairy cattle. Eur. J. Lipid. Sci. Technol., 109: 767-777.
  4. Boeckaert C., Vlaeminck B., Fievez V., Maignien L., Dijkstra J., Boon N. (2008). Accumulation of trans C18:1 fatty acids in the rumen after dietary algae supplementation is associated with shifts in Butyrivibrio species. Appl. Environ. Microbiol., 74: 6923-6930.
  5. Buccioni A., Decandia M., Minieri S., Molle G., Cabiddu A. (2012). Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed. Sci. Tech., 174: 1-25.
  6. Castro-Carrera T., Toral P.G., Frutos P., Mc Ewan N.R., Hervás G., Abecia L., Pin- loche E., Girdwood S.E., Belenguer A. (2014). Rumen bacterial community evaluated by 454 pyrosequencing and terminal restriction fragment length polymorphism analyses in dairy sheep fed marine algae. J. Dairy Sci., 97: 1661-1669.
  7. Cheng Y., Mao S.Y., Pei C., Liu J.H., Zhu W.Y. (2006). Detection and diversity analysis of rumen methanogens in the co-cultures with anaerobic fungi. Acta Microbiologica Sinica, 46: 879-883.
  8. Childs S., Hennessy A.A., Sreenan J.M., Wathes D.C., Cheng Z., Stanton C., Dis- kin M.G., Dehority B.A. (1984). Evaluation of subsampling and fixation procedures used for counting rumen protozoa. Appl. Environ. Microbiol., 48: 182-185.
  9. Cooper S.L., Sinclair L.A., Wilkinson R.G., Hallett K.G., Enser M., Wood J.D. (2004). Manipulation of the n-3 polyunsaturated fatty acid content of muscle and adipose tissue in lambs. J. Anim. Sci., 82: 1461-1470.
  10. Denman S.E., Mc Sweeney C.S. (2006). Development ofareal-time PCRassay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol., 58: 572-582.
  11. Duckett S.K., Gillis M.H. (2010). Effects of oil source and fish oil addition on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets. J. Anim. Sci., 88: 2684-2691.
  12. Fievez V., Dohme F., Danneels M., Raes K., Demeyer D. (2003). Fish oils as potent rumen methane inhibitors and associated effects on rumen fermentation in vitro and in vivo. Anim. Feed Sci. Technol., 104: 41-58.
  13. Fievez V., Boeckaert C., Vlaeminck B., Mestdagh J., Demeyer D. (2007). In vitro examination of DHA-edible micro-algae: 2. Effect on rumen methane production and apparent degradability of hay. Anim. Feed Sci. Technol., 136: 80-95.
  14. Harfoot C.G., Hazlewood G.P. (1997). Lipid metabolism in the rumen. In: Hobson P.N., Stewart D.S. (eds.) The Rumen Microbial Ecosystem. Chapman & Hall, London, UK. pp. 382-426.
  15. Hristov A., Kennington L., Mc Guire M., Hunt C. (2005). Effect of diets containing linoleic acid- or oleic acid-rich oils on ruminal fermentation and nutrient digestibility, and performance and fatty acid composition of adipose and muscle tissues of finishing cattle. J. Anim. Sci., 83: 1312-1321.
  16. Huws S.A., Lee M.R., Muetzel S.M., Scott M.B., Wallace R.J., Scollan N.D. (2010). Forage type and fish oil cause shifts in rumen bacterial diversity. FEMS Microbiol. Ecol., 73: 396-407.
  17. Janeczek W., Pogoda-Sewerniak K., Dzięcioł M., Szołtysik M., Zawadzki W. (2011). Influence of marine algae and fish oil application on dairy cows metabolism. Acta Scientiarum Polonorum-Medicina Veterinaria, 10: 35-45.
  18. Kim E.J., Huws S.A., Lee M.R.F., Wood J.D., Muetzel S.M., Wallace R.J., Scol - lan N.D. (2008). Fish oil increases the duodenal flow of long chain polyunsaturated fatty acids and trans-11 18:1 and decreases 18:0 in steers via changes in the rumen bacterial community. J. Nutr., 138: 889-896.
  19. Konstantinov S.R., Zhu W.Y., Williams B.A., Tamminga S., Vos W.M., Akker- mans A.D.L. (2003). Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16Sribosomal DNA. FEMS Microbiol. Ecol., 43: 225-235.
  20. Kupczyński R., Szołtysik M., Janeczek W., Chrzanowska J., Kinal S., Króli - czewska B. (2011). Effect of dietary fish oil on milk yield, fatty acids content and serum metabolic profile in dairy cows. J. Anim. Physiol. An. N., 95: 512-522.
  21. Lane D. (1991). 16S/23Sr RNAsequencing. Nucleic acid techniques in bacterial systematics, pp. 125-175.
  22. Liu S., Bu D., Wang J., Liu L., Liang S., Wei H., Zhou L., Li D., Loor J. (2012). Effect of incremental levels of fish oil supplementation on specific bacterial populations in bovine ruminal fluid. J. Anim. Physiol. Anim. Nutr., 96: 9-16.
  23. Lunn J., Theobald H.E. (2006). The health effects of dietary unsaturated fatty acids. Nutrition Bulletin, 31: 178-224.
  24. Maia M.R.G., Chaudhary L.C., Figueres L., Wallace R.J. (2007). Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Leeuwenhoek, 91: 303-314.
  25. Maia M.R.G., Chaudhary L.C., Bestwick C.S., Richardson A.J., Mc Kain N., Lar- son T.R., Graham I.A., Wallace R.J. (2010). Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiology, 10: 52-61.
  26. Mao S.Y., Zhang G., Zhu W.Y. (2007). Effect of disodium fumarate on in vitro rumen fermentation of different substrates and rumen bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16s ribosomal DNA. Asian-Aust. J. Anim. Sci., 20: 543-549.
  27. Mashek D.G., Bertics S.J., Grummer R.R. (2002). Metabolic fate of long-chain unsaturated fatty acids and their effects on palmitic acid metabolism and gluconeogenesis in bovine hepatocytes. J. Dairy Sci., 85: 2283-2289.
  28. Ministry of Agriculture of China (2004). Feeding standard of meat-producing sheep and goats (NY/ Y816-2004). China Agricultural Press, Beijing, China.
  29. Mirzaei F., Rezaeian M., Towhidi A., Nik- Khah A., Sereshti H. (2009). Effects of fish oil, safflower oil and monensin supplementation on performance, rumen fermentation parameters and plasma metabolites in Chall sheep. Int. J. Vet. Res., 3: 113-128.
  30. Mosoni P., Chaucheyras- Durand F., Béra-Maillet C., Forano E. (2007). Quantification by real-time PCRof cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect ofayeast additive. J. Appl. Microbiol., 103: 2676-2685.
  31. Nocek J., Russell J. (1988). Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. J. Dairy Sci., 71: 2070-2107.
  32. Nübel U., Engelen B., Felske A., Snaidr J., Wieshuber A., Amann R.I., Lud- wig W., Backhaus H. (1996). Sequence heterogeneities of genes encoding 16Sr RNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol., 178: 5636-5643.
  33. Orpin C., Letcher A. (1979). Utilization of cellulose, starch, xylan, and other hemicelluloses for growth by the rumen phycomycete Neocallimastix frontalis. Curr. Microbiol., 3: 121-124.
  34. Paillard D., Mc Kain N., Chaudhary L., Walker N., Pizette F., Koppova I., Mc - Ewan N., Kopečný J., Vercoe P., Louis P., Wallace R. (2007). Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen. Antonie Leeuwenhoek, 91: 417-422.
  35. Shannon C.E., Weaver W. (1963). The mathematical theory of communication. University of Illinois Press, Urbana, IL, U.S.A.
  36. Shingfield K.J., Ahvenjärvi S., Toivonen V., Ärölä A. (2003). Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Anim. Sci., 77: 165-179.
  37. Shingfield K.J., Kairenius P., Ärölä A., Paillard D., Muetzel S., Ahvenjärvi S., Vanhatalo A., Huhtanen P., Toivonen V., Griinari J.M. (2012). Dietary fish oil supplements modify ruminal biohydrogenation, alter the flow of fatty acids at the omasum, and induce changes in the ruminal Butyrivibrio population in lactating cows. J. Nutr., 142: 1437-1448.
  38. Sun Y.Z., Mao S.Y., Yao W., Zhu W.Y. (2008). DGGEand 16Sr DNAanalysis revealsahighly diverse and rapidly colonising bacterial community on different substrates in the rumen of goats. Animal, 2: 391-398.
  39. Suzuki M.T., Taylor L.T., De Long E.F. (2000). Quantitative analysis of small-subunit r RNA genes in mixed microbial populations via 5'-nuclease assays. Appl. Environ. Microbiol., 66: 4605-4614.
  40. Toral P.G., Shingfield K.J., Hervás G., Toivonen V., Frutos P. (2010). Effect of fish oil and sunflower oil on rumen fermentation characteristics and fatty acid composition of digesta in ewes fedahigh concentrate diet. J. Dairy Sci., 93: 4804-4817.
  41. Van Soest P.J., Robertson J.B., Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583-3597.
  42. Wanapat M., Cherdthong A. (2009). Use of real-time PCRtechnique in studying rumen cellulolytic bacteria population as affected by level of roughage in swamp buffalo. Curr. Microbiol., 58: 294-299.
  43. Wąsowska I., Maia M.R., Niedzwiedzka K.M., Czauderna M., Ribeiro J.M., Dev- illard E., Shingfield K.J., Wallace R.J. (2006). Influence of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids. Br. J. Nutr., 95: 1199-1211.
  44. Weatherburn M. (1967). Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem., 39: 971-974.
  45. Yang C.J., Mao S.Y., Long L.M., Zhu W.Y. (2012). Effect of disodium fumarate on microbial abundance, ruminal fermentation and methane emission in goats under different forage: concentrate ratios. Animal, 6: 1788-1794.
DOI: https://doi.org/10.1515/aoas-2015-0100 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 533 - 550
Submitted on: Dec 8, 2014
Accepted on: Jan 19, 2016
Published on: May 6, 2016
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Xuejiao Lv, Shengyong Mao, Weiyun Zhu, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.