Have a personal or library account? Click to login

19. Improving the Prediction of Methane Production Determined by in Vitro Gas Production Technique for Ruminants

By:
Open Access
|May 2016

References

  1. Allison M.J. (1970). Nitrogen metabolism of ruminal microorganisms. In: Physiology of digestion and metabolism in the ruminant, Phillipson A.T., Annison E.F., Armstrong D.G., Balch C.C., Hardy R.N., Hobson P. N., Keynes F.R.S.R.D. (eds). Oriel Press Ltd., London, UK, pp. 456-473.
  2. AOAC (1995). Official methods of analysis (16th ed.). Association of Official Analytical Chemists. Arlington. VA.
  3. Bannink A., Kogut J., Dijkstra J., France J., Kebreab E., Van Vuuren A.M., Tam- minga S. (2006). Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. J. Theor. Biol., 238: 36-51.
  4. Bhatta R., Tajima K., Takusari N., Higuchi K., Enishi O., Kurihara M. (2007). Comparison of in vivo and in vitro techniques for methane production from ruminant diets. Asian-Aust. J. Anim. Sci., 20: 1049-1056.
  5. Blümmel M., Givens D.I., Moss A.R. (2005). Comparison of methane produced by straw fed sheep in open-circuit respiration with methane predicted by fermentation characteristics measured by an in vitro gas procedure. Anim. Feed Sci. Technol., 123-124: 379-390.
  6. Brown V.E., Rymer C., Agnew R.E., Givens D.I. (2002). Relationship between in vitro gas production profiles of forages and in vivo rumen fermentation patterns in beef steers fed those forages. Anim. Feed Sci. Technol., 98: 13-24.
  7. Chaves A.V., Thompson L.C., Iwaasa A.D., Scott S.L., Olson M.E., Benchaar C., Veira D.M., Mc Allister T.A. (2006). Effect of pasture type (alfalfa vs. grass) on methane and carbon dioxide production by yearling beef heifers. Can. J. Anim. Sci., 86: 409-418.
  8. Chen C.N., Lee T.T., Yu B. (2013). Comparison of the dietary fiber digestibility and fermentability of feedstuffs determined by conventional methods and in vitro gas production technique in pigs. Acta. Agr. Scand. A - Anim. Sci., 63: 201-207.
  9. Christophersen C.T., Wright A.D.G., Vercoe P.E. (2008). In vitro methane emission and acetate:propionate ratio are decreased when artificial stimulation of the rumen wall is combined with increasing grain diets in sheep. J. Anim. Sci., 86: 384-389.
  10. Cone J.W., Van Gelder A.H., Visscher G.J.W., Oudshoorn L. (1996). Influence of rumen fluid and substrate concentration on fermentation kinetics measured withafully automated time related gas production apparatus. Anim. Feed Sci. Technol., 61: 113-128.
  11. DePeters E.J., Fadel J.G., Arosemena A. (1997). Digestion kinetics of neutral detergent fiber and chemical composition within some selected by-product feedstuffs. Anim. Feed Sci. Technol., 67: 127-140.
  12. Dijkstra J., Kebreab E., Bannink A., France J., López S. (2005). Application of the gas production technique to feed evaluation systems for ruminants. Anim. Feed Sci. Technol., 123-124: 561-578.
  13. Dijkstra J., Ellis J.L., Kebreab E., Strathe A.B., Lopez S., France J., Bannink A. (2012). Ruminal p Hregulation and nutritional consequences of low p H. Anim. Feed Sci. Technol., 172: 22-23.
  14. Dohme F., Machmueller A., Wasserfallen A., Kreuzer M. (2001). Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett. Appl. Microbiol., 32: 47-51.
  15. Estermann B.L., Sutter F., Schlegel P.O., Erdin D., Wettsten H.R., Kreuzer M. (2002). Effect of calf age and dam breed on intake, energy expenditure, and excretion of nitrogen, phosphorus and methane of beef cows with calves. J. Anim. Sci., 80: 1124-1134.
  16. Getachew G., Robinson P.H., De Peters E.J., Taylor S.J. (2004). Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol., 111: 57-71.
  17. Getachew G., Robinson P.H., De Peters E.J., Taylor S.J., Gisi D.D., Higgginbo- tham G.E., Riordan T.J. (2005). Methane production from commercial dairy rations estimated using an in vitro gas technique. Anim. Feed Sci. Technol., 123-124: 391-403.
  18. Hatew B., Podesta S.C., Van Laar H., Pellikaan W.F., Ellis J.L., Dijkstra J., Ban- nink A. (2015). Effects of dietary starch content and rate of fermentation on methane production in lactating dairy cows. J. Dairy Sci., 98: 486-499.
  19. Hindrichsen I.K., Wettstein H.-R., Machmüller A., Soliva C.R., Bach Knud - sen K.E., Madsen J., Kreuzer M. (2004). Effects of feed carbohydrates with contrasting properties on rumen fermentation and methane release in vitro. Can. J. Anim. Sci., 84: 265-276.
  20. Hristov A.N., Oh J., Firkins J. L., Dijkstra J., Kebreab E., Waghorn G., Mak- kar H.P.S., Adesogan A.T., Yang W., Lee C., Gerber P.J., Henderson B., Tricar - ico J.M. (2013). Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci., 91: 5045-5069.
  21. Janssen P.H. (2010). Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol., 160: 1-22.
  22. Jentsch W., Schweigel M., Weissbach F., Scholze H., Pittroff W., Derno M. (2007). Methane production in cattle calculated by the nutrient composition of the diet. Arch. Anim. Nutr., 61: 10-19.
  23. Johnson K.A., Johnson D.E. (1995). Methane emissions from cattle. J. Anim. Sci., 73: 2483-2492.
  24. Kim S.H., Mamuad L.L., Jeong C.D., Choi Y.J., Lee S.S., Ko J.Y., Lee S.S. (2013). In vitro evaluation of different feeds for their potential to generate methane and change methanogen diversity. Asian-Aust. J. Anim. Sci., 26: 1698-1707.
  25. Lee H.J., Lee S.C., Kim J.D., Oh Y.G., Kim B.K., Kim C.W., Kim K.J. (2003). Methane production potential of feed ingredients as measured by in vitro gas test. Asian-Aust. J. Anim. Sci., 16: 1143-1150.
  26. Lovett D.K., Bortolozzo A., Conaghan P., O’ Kiely P., O’ Mara F.P. (2004). In vitro total and methane gas production as influenced by rate of nitrogen application, season of harvest and perennial ryegrass cultivar. Grass Forage Sci., 59: 227-23210.1111/j.1365-2494.2004.00421.x
  27. Machmüller A., Ossowski D.A., Wanner M., Kreuzer M. (1998). Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (Rusitec). Anim. Feed Sci. Technol., 71: 117-130.
  28. McAllister T.A., Okine E.K., Mathison G.W., Cheng K.J. (1996). Dietary, environmental and microbiological aspects of methane production in ruminants. Can. J. Anim. Sci., 76: 231-243.
  29. Meale S.J., Chaves A.V., Baah J., Mc Allister T.A. (2012). Methane production of different forages in in vitro ruminal fermentation. Asian-Aust. J. Anim. Sci., 25: 86-91.
  30. Navarro-Villa A., O’Brien M., López S., Boland T.M., O’Kiely P. (2011). In vitro rumen methane output of red clover and perennial ryegrass assayed using the gas production technique (GPT). Anim. Feed Sci. Technol., 168: 152-164.
  31. NRC (2001). Nutrient Requirements of Dairy Cattle. National Academy Press. Washington, D.C.
  32. Pellikaan W.F., Hendriks W.H., Uwimana G., Bongers L.J.G.M., Becker P.M., Co -ne J.W. (2011). Anovel method to determine simultaneously methane production during in vitro gas production using fully automated equipment. Anim. Feed Sci. Technol., 168: 196-205.
  33. Ramin M., Huhtanen P. (2013). Development of equations for predicting methane emissions from ruminants. J. Dairy Sci., 96: 2476-2493.
  34. Santoso B., Hariadi B.T. (2009). Evaluation of nutritive value and in vitro methane production of feedstuffs from agricultural and food industry by-products. J. Indones. Trop. Anim. Agric., 34: 189-195.
  35. Singer M.D., Robinson P.H., Salem A.Z.M., De Peters E.J. (2008). Impacts of rumen fluid modified by feeding Yucca schidigera to lactating dairy cows on in vitro gas production of 11 common dairy feedstuffs, as well as animal performance. Anim. Feed Sci. Technol., 146: 242-258.
  36. Singh S., Kushwaha B.P., Nag S.K., Mishra A.K., Singh A., Anele U.Y. (2012). In vitro ruminal fermentation, protein and carbohydrate fractionation, methane production and prediction of twelve commonly used Indian green forages. Anim. Feed Sci. Technol., 178: 2-11.
  37. Soliva C.R., Hindrichsen I.K., Meile L., Kreuzer M., Machmüller A. (2003). Effects of mixtures of lauric and myristic acid on rumen methanogens and methanogenesis in vitro. Lett. Appl. Microbiol., 37: 35-39.
  38. Takahashi J. (2001). Nutritional manipulation of methanogenesis in ruminants. Asian-Aust. J. Anim. Sci., 14: 131-135.
  39. Van Soest P.J., Robertson J.B., Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583-3597.
  40. Waghorn G.C., Hegarty R.S. (2011). Lowering ruminant methane emissions through improved feed conversion efficiency. Anim. Feed Sci. Technol., 166-167: 291-301.
  41. Wilkerson V.A., Casper D.P., Mertens D.R. (1995). The prediction of methane production of Holstein cows by several equations. J. Dairy Sci., 78: 2402-2414.
DOI: https://doi.org/10.1515/aoas-2015-0078 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 565 - 584
Submitted on: Apr 2, 2015
Accepted on: Oct 28, 2015
Published on: May 6, 2016
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Chung-Nan Chen, Tzu-Tai Lee, Bi Yu, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.