Have a personal or library account? Click to login
Refinements of the Hermite–Hadamard Inequality in NPC Global Spaces Cover

Refinements of the Hermite–Hadamard Inequality in NPC Global Spaces

By: Cristian Conde  
Open Access
|Aug 2018

References

  1. [1] Abramovich S., Baric J., Pecaric J., Fejer and Hermite-Hadamard type inequalities for superquadratic functions, J. Math. Anal. Appl. 344 (2008), no. 2, 1048-1056.
  2. [2] Barnett N.S., Cerone P., Dragomir S.S., Some new inequalities for Hermite-Hadamard divergence in information theory, Stochastic analysis and applications Vol. 3, 7-19, Nova Sci. Publ., Hauppauge, New York, 2003.
  3. [3] Bessenyei M., Hermite-Hadamard-type inequalities for generalized convex functions, J. Inequal. Pure Appl. Math. 9 (2008), no. 3, Art. 63, 51 pp.
  4. [4] Bhatia R., The logarithmic mean, Resonance 13 (2008), no. 6, 583-594.
  5. [5] Carlson B.C., The logarithmic mean, Amer. Math. Monthly 79 (1972), no. 6, 615-618.
  6. [6] Cerone P., Dragomir S.S., Mathematical inequalities. A perspective, CRC Press, Boca Raton, 2011.10.1201/b10483
  7. [7] Conde C., A version of the Hermite-Hadamard inequality in a nonpositive curvature space, Banach J. Math. Anal. 6 (2012), no. 2, 159-167.
  8. [8] Dragomir S.S., Bounds for the normalised Jensen functional, Bull. Austral. Math. Soc. 74 (2006), no. 3, 471-478.
  9. [9] Dragomir S.S., Hermite-Hadamard’s type inequalities for operator convex functions, Appl. Math. Comput. 218 (2011), no. 3, 766-772.
  10. [10] Dragomir S.S., Pearce C.E.M., Selected Topics on Hermite-Hadamard Inequalities, RGMIA Monographs, Victoria University, 2000. Available at http://rgmia.vu.edu.au/monographs/hermite_hadamard.html
  11. [11] El Farissi A., Simple proof and refinement of Hermite-Hadamard inequality. J. Math. Inequal. 4 (2010), no. 3, 365-369.
  12. [12] Hadamard J., Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann (French), J. Math. Pures et Appl. 58 (1893), 171-215.
  13. [13] Házy A., Páles Z., On a certain stability of the Hermite-Hadamard inequality, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465 (2009), no. 2102, 571-583.
  14. [14] Jost J., Nonpositive curvature: geometric and analytic aspects, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1997.10.1007/978-3-0348-8918-6
  15. [15] Kikianty E., Hermite-Hadamard inequality in the geometry of Banach spaces, PhD thesis, Victoria University, 2010. Available at eprints.vu.edu.au/15793/1/ EderKikiantyThesis.pdf.
  16. [16] Klaricic M., Neuman E., Pecaric J., Šimic V., Hermite-Hadamard’s inequalities for multivariate g-convex functions, Math. Inequal. Appl. 8 (2005), no. 2, 305-316.
  17. [17] Lang S., Fundamentals of differential geometry, Graduate Texts in Mathematics, Springer-Verlag, New York, 1999.10.1007/978-1-4612-0541-8
  18. [18] Leach E.B., Sholander M.C., Extended mean values. II, J. Math. Anal. Appl. 92 (1983), no. 1, 207-223.
  19. [19] Mihailescu M., Niculescu C.P., An extension of the Hermite-Hadamard inequality through subharmonic functions, Glasg. Math. J. 49 (2007), no. 3, 509-514.
  20. [20] Mitroi F.-C., About the precision in Jensen-Steffensen inequality, An. Univ. Craiova Ser. Mat. Inform. 37 (2010), no. 4, 73-84.
  21. [21] Niculescu C.P., Persson L.-E., Convex functions and their applications. A contemporary approach, Springer, New York, 2006.10.1007/0-387-31077-0_2
  22. [22] Wu S., On the weighted generalization of the Hermite-Hadamard inequality and its applications, Rocky Mountain J. Math. 39 (2009), no. 5, 1741-1749.
  23. [23] Zabandan G., A new refinement of the Hermite-Hadamard inequality for convex functions, J. Inequal. Pure Appl. Math. 10 (2009), no. 2, Art. 45, 7 pp.
DOI: https://doi.org/10.1515/amsil-2017-0015 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 133 - 144
Submitted on: Apr 21, 2017
Accepted on: Sep 21, 2017
Published on: Aug 24, 2018
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Cristian Conde, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.