Have a personal or library account? Click to login
Generalizations of some Integral Inequalities for Fractional Integrals Cover

Generalizations of some Integral Inequalities for Fractional Integrals

By: Ghulam Farid and  Atiq ur Rehman  
Open Access
|Aug 2018

References

  1. [1] Alomari M., Darus M., On the Hadamard’s inequality for log-convex functions on the coordinates, J. Inequal. Appl. 2009, Article ID 283147, 13 pp.10.1155/2009/283147
  2. [2] Azócar A., Nikodem K., Roa G., Fejér-type inequalities for strongly convex functions, Ann. Math. Sil. 26 (2012), 43-53.
  3. [3] Azpeitia A.G., Convex functions and the Hadamard inequality, Rev. Colombiana Mat. 28 (1994), 7-12.
  4. [4] Díaz R., Pariguan E., On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat. 15 (2007), no. 2, 179-192.
  5. [5] Dragomir S.S., Two mappings in connection to Hadamard’s inequalities, J. Math. Anal. Appl. 167 (1992), no. 1, 49-56.
  6. [6] Dragomir S.S., On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math. 33 (2002), no. 1, 55-65.
  7. [7] Dragomir S.S., Agarwal R.P., Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (1998), no. 5, 91-95.10.1016/S0893-9659(98)00086-X
  8. [8] Dragomir S.S., Pearce C.E.M., Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, Melbourne, 2000.
  9. [9] Farid G., Rehman A.U., Zahra M., On Hadamard inequalities for k-fractional integrals, Nonlinear Funct. Anal. Appl. 21 (2016), no. 3, 463-478.
  10. [10] Fejér L., Über die Fourierreihen, II, Math. Naturwiss. Anz. Ungar. Akad. Wiss. 24 (1906), 369-390 (in Hungarian).
  11. [11] Gill P.M., Pearce C.E.M., Pecaric J., Hadamard’s inequality for r-convex functions, J. Math. Anal. Appl. 215 (1997), no. 2, 461-470.
  12. [12] Iscan I., Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals, Stud. Univ. Babes-Bolyai Math. 60 (2015), no. 3, 355-366.
  13. [13] Kirmaci U.S., Klaricic Bakula M., Özdemir M.E., Pecaric J., Hadamard-type inequalities for s-convex functions, Appl. Math. Comput. 193 (2007), no. 1, 26-35.
  14. [14] Klaricic Bakula M., Özdemir M.E., Pecaric J., Hadamard type inequalities for m- convex and (,m)-convex functions, JIPAM. J. Inequal. Pure Appl. Math. 9 (2008), no. 4, Article 96, 12 pp.
  15. [15] Klaricic Bakula M., Pecaric J., Note on some Hadamard-type inequalities, JIPAM. J. Inequal. Pure Appl. Math. 5 (2004), no. 3, Article 74, 9 pp.
  16. [16] Lesnic D., Characterizations of the functions with bounded variation, Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics (ICTAMI 2003), Part A, Acta Univ. Apulensis Math. Inform. 6 (2003), 47-54.
  17. [17] Mubeen S., Habibullah G.M., k-fractional integrals and application, Int. J. Contemp. Math. Sci. 7 (2012), no. 1-4, 89-94.
  18. [18] Sarikaya M.Z., Erden S., On the Hermite-Hadamard-Féjer type integral inequality for convex function, Turkish J. Anal. Number Theory 2 (2014), no. 3, 85-89.10.12691/tjant-2-3-6
  19. [19] Sarikaya M.Z., Set E., Yaldiz H., Basak N., Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling 57 (2013), no. 9-10, 2403-2407.
  20. [20] Wang J., Zhu C., Zhou Y., New generalized Hermite-Hadamard type inequalities and applications to special means, J. Inequal. Appl. 2013, Article ID 325, 15 pp.10.1186/1029-242X-2013-325
  21. [21] Xiang R., Refinements of Hermite-Hadamard type inequalities for convex functions via fractional integrals, J. Appl. Math. Inform. 33 (2015), no. 1-2, 119-125.
DOI: https://doi.org/10.1515/amsil-2017-0010 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 201 - 214
Submitted on: Jan 3, 2017
Accepted on: Jun 24, 2017
Published on: Aug 24, 2018
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Ghulam Farid, Atiq ur Rehman, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.