Have a personal or library account? Click to login
Solutions and Stability of Generalized Kannappan’s and Van Vleck’s Functional Equations Cover

Solutions and Stability of Generalized Kannappan’s and Van Vleck’s Functional Equations

Open Access
|Aug 2018

References

  1. [1] Badora R., On a joint generalization of Cauchy’s and d’Alembert’s functional equations, Aequationes Math. 43 (1992), no. 1, 72-89.
  2. [2] Baker J.A., The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), 411-416.10.1090/S0002-9939-1980-0580995-3
  3. [3] Baker J.A., Lawrence J., Zorzitto F., The stability of the equation f(x+y) = f(x)f(y), Proc. Amer. Math. Soc. 74 (1979), 242-246.
  4. [4] Bouikhalene B., Elqorachi E., An extension of Van Vleck’s functional equation for the sine, Acta Math. Hungar. 150 (2016), no. 1, 258-267.
  5. [5] Bouikhalene B., Elqorachi E., Rassias J.M., The superstability of d’Alembert’s functional equation on the Heisenberg group, Appl. Math. Lett. 23 (2000), no. 1, 105-109.
  6. [6] Bouikhalene B., Elqorachi E., Hyers-Ulam stability of spherical function, Georgian Math. J. 23 (2016), no. 2, 181-189.
  7. [7] d’Alembert J., Recherches sur la courbe que forme une corde tendue mise en vibration, I, Hist. Acad. Berlin 1747 (1747), 214-219.
  8. [8] d’Alembert J., Recherches sur la courbe que forme une corde tendue mise en vibration, II, Hist. Acad. Berlin 1747 (1747), 220-249.
  9. [9] d’Alembert J., Addition au Mémoire sur la courbe que forme une corde tendue mise en vibration, Hist. Acad. Berlin 1750 (1750), 355-360.
  10. [10] Davison T.M.K., D’Alembert’s functional equation on topological groups, Aequationes Math. 76 (2008), no. 1-2, 33-53.
  11. [11] Davison T.M.K., D’Alembert’s functional equation on topological monoids, Publ. Math. Debrecen 75 (2009), no. 1-2, 41-66.
  12. [12] Ebanks B.R., Stetkær H., d’Alembert’s other functional equation on monoids with an involution, Aequationes Math. 89 (2015), no. 1, 187-206.
  13. [13] Elqorachi E., Integral Van Vleck’s and Kannappan’s functional equations on semigroups, Aequationes Math. 91 (2017), no. 1, 83-98.
  14. [14] Elqorachi E., Akkouchi M., The superstability of the generalized d’Alembert functional equation, Georgian Math. J. 10 (2003), no. 3, 503-508.
  15. [15] Elqorachi E., Akkouchi M., On generalized d’Alembert and Wilson functional equations, Aequationes Math. 66 (2003), no. 3, 241-256.
  16. [16] Elqorachi E., Akkouchi M., Bakali A., Bouikhalene B., Badora’s equation on nonabelian locally compact groups, Georgian Math. J. 11 (2004), no. 3, 449-466.
  17. [17] Elqorachi E., Bouikhalene B., Functional equation and µ-spherical functions, Georgian Math. J. 15 (2008), no. 1, 1-20.
  18. [18] Elqorachi E., Redouani A., Rassias Th.M., Solutions and stability of a variant of Van Vleck’s and d’Alembert’s functional equations, Int. J. Nonlinear Anal. Appl. 7 (2016), no. 2, 279-301.
  19. [19] Ger R., Superstability is not natural, Rocznik Nauk.-Dydakt. Prace Mat. 159 (1993), no. 13, 109-123.
  20. [20] Ger R., Šemrl P., The stability of the exponential equation, Proc. Amer. Math. Soc. 124 (1996), no. 3, 779-787.
  21. [21] Forti G.L., Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), no. 1-2, 143-190.
  22. [22] Hyers D.H., Isac G.I., Rassias Th.M., Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.10.1007/978-1-4612-1790-9
  23. [23] Kannappan Pl., A functional equation for the cosine, Canad. Math. Bull. 2 (1968), 495-498.10.4153/CMB-1968-059-8
  24. [24] Kim G.H, On the stability of trigonometric functional equations, Adv. Difference Equ. 2007, Article ID 90405, 10 pp.10.1155/2007/90405
  25. [25] Kim G.H., On the stability of the Pexiderized trigonometric functional equation, Appl. Math. Comput. 203 (2008), no. 1, 99-105.
  26. [26] Lawrence J., The stability of multiplicative semigroup homomorphisms to real normed algebras, Aequationes Math. 28 (1985), no. 1-2, 94-101.
  27. [27] Perkins A.M., Sahoo P.K., On two functional equations with involution on groups related to sine and cosine functions, Aequationes Math. 89 (2015), no. 5, 1251-1263.
  28. [28] Redouani A., Elqorachi E., Rassias M.Th., The superstability of d’Alembert’s functional equation on step 2 nilpotent groups, Aequationes Math. 74 (2007), no. 3, 226-241.
  29. [29] Sinopoulos P., Contribution to the study of two functional equations, Aequationes Math. 56 (1998), no. 1-2, 91-97.
  30. [30] Stetkær H., d’Alembert’s equation and spherical functions, Aequationes Math. 48 (1994), no. 2-3, 220-227.
  31. [31] Stetkær H., Functional Equations on Groups, World Scientific Publishing Co, Singapore, 2013.10.1142/8830
  32. [32] Stetkær H., A variant of d’Alembert’s functional equation, Aequationes Math. 89 (2015), no. 3, 657-662.
  33. [33] Stetkær H., Van Vleck’s functional equation for the sine, Aequationes Math. 90 (2016), no. 1, 25-34.
  34. [34] Stetkær H., Kannappan’s functional equation on semigroups with involution, Semigroup Forum 94 (2017), 17-33.10.1007/s00233-015-9756-7
  35. [35] Van Vleck E.B., A functional equation for the sine, Ann. of Math. (2) 11 (1910), no. 4, 161-165.10.2307/1967133
  36. [36] Van Vleck E.B., On the functional equation for the sine. Additional note on: “A functional equation for the sine”, Ann. of Math. (2) 13 (1911/12), no. 1-4, 154.10.2307/1968082
DOI: https://doi.org/10.1515/amsil-2017-0006 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 169 - 200
Submitted on: Nov 17, 2016
Accepted on: May 3, 2017
Published on: Aug 24, 2018
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Elhoucien Elqorachi, Ahmed Redouani, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.