Have a personal or library account? Click to login
Some Problems in the Calculus of Variations Cover
By: Arrigo Cellina  
Open Access
|Sep 2017

References

  1. [1] Brézis H., Multiplicateur de Lagrange en Torsion Elastoplastique, Arch. Rat. Mech. Anal. 49 (1972), 32-40.10.1007/BF00281472
  2. [2] Cellina A., The classical problem of the calculus of variations in the autonomous case: relaxation and Lipschitzianity of solutions, Trans. Amer. Math. Soc. 356 (2004), 415-426.10.1090/S0002-9947-03-03347-6
  3. [3] Cellina A., Strict convexity and the regularity of solutions to variational problems, ESAIM Control Optim. Calc. Var. 22 (2016), 862-871.10.1051/cocv/2015034
  4. [4] Cellina A., The regularity of solutions to the p-Laplace equation for 1 < p < 2, ESAIM Control Optim. Calc. Var. To appear.
  5. [5] Cellina A., The validity of the Euler-Lagrange equation for solutions to variational problems, J. Fixed Point Theory Appl. 15 (2014), 577-586.10.1007/s11784-014-0198-8
  6. [6] Cellina A., A case of regularity of solutions to nonregular problems, SIAM J. Control Optim. 53 (2015), 2835-2845.10.1137/14099646X
  7. [7] Cellina A., Ferriero A., Existence of Lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 911-919.10.1016/s0294-1449(03)00010-6
  8. [8] Cellina A., Perrotta S., On minima of radially symmetric functionals of the gradient, Nonlinear Anal. 23 (1994), no. 2, 239-249.
  9. [9] Cellina A., Staicu V., The existence of solutions to variational problems of slow growth, J. Differential Equations 260 (2016), 5834-5846. 10.1016/j.jde.2015.12.025
  10. [10] Cellina A., Treu G., Zagatti S., On the minimum problem for a class of non-coercive functionals, J. Differential Equations 127 (1996), 225-262.10.1006/jdeq.1996.0069
  11. [11] Dacorogna B., Direct methods in the Calculus of Variations, Second edition, Springer, Berlin, 2008.10.1142/p616
  12. [12] Degiovanni M., Marzocchi M., On the Euler-Lagrange equation for functionals of the calculus of variations without upper growth conditions, SIAM J. Control Optim. 48 (2009), 2857-2870.10.1137/090747968
  13. [13] Esposito L., Leonetti F., Mingione G., Regularity results for minimizers of irregular integrals with (p, q) growth, Forum Math. 14 (2002), 245-272.10.1515/form.2002.011
  14. [14] Jenkins H., Serrin J., The Dirichlet problem for the minimal surface equation in higher dimensions, J. Reine Angew. Math. 229 (1968), 170-187.
  15. [15] Rockafellar R.T., Convex Analysis, Princeton University Press, Princeton, 1972.
DOI: https://doi.org/10.1515/amsil-2017-0005 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 5 - 55
Submitted on: Jan 3, 2017
Accepted on: Mar 28, 2017
Published on: Sep 13, 2017
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Arrigo Cellina, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.