Have a personal or library account? Click to login
On Stability of the Cauchy Functional Equation in Groupoids Cover

On Stability of the Cauchy Functional Equation in Groupoids

By: Imke Toborg and  Peter Volkmann  
Open Access
|Sep 2017

References

  1. [1] Badora R., Przebieracz B., Volkmann P., Stability of the Pexider functional equation, Ann. Math. Sil. 24 (2010), 7-13.
  2. [2] Badora R., Przebieracz B., Volkmann P., On Tabor groupoids and stability of some functional equations, Aequationes Math. 87 (2014), 165-171.10.1007/s00010-013-0206-x
  3. [3] Forti G.L., Remark 11 (at the 22nd International Symposium on Functional Equations, Oberwolfach 1984), Aequationes Math. 29 (1985), 90-91.10.1007/BF02189806
  4. [4] Lifšic E.A., Ideal’no vypuklye množestva, Funkcional’. Analiz Priložen. 4 (1970), no. 4, 76-77.
  5. [5] Moszner Z., On the stability of functional equations, Aequationes Math. 77 (2009), 33-88.10.1007/s00010-008-2945-7
  6. [6] Páles Z., Volkmann P., Luce R.D., Hyers-Ulam stability of functional equations with a square-symmetric operation, Proc. Nat. Acad. Sci. U.S.A. 95 (1998), 12772-12775.10.1073/pnas.95.22.12772235839788988
  7. [7] Rätz J., On approximately additive mappings, in: General inequalities 2, International Series of Numerical Mathematics 47, Birkhäuser, Basel, 1980, pp. 233-251.10.1007/978-3-0348-6324-7_22
  8. [8] Tabor Jacek, Ideally convex sets and Hyers theorem, Funkcial. Ekvac. 43 (2000), 121-125.
  9. [9] Tabor Józef, Remark 18 (at the 22nd International Symposium on Functional Equations, Oberwolfach 1984), Aequationes Math. 29 (1985), 96.
  10. [10] Toborg I., Tabor groups with finiteness conditions, Aequationes Math. 90 (2016), 699-704.10.1007/s00010-015-0369-8
  11. [11] Volkmann P., Zur Rolle der ideal konvexen Mengen bei der Stabilität der Cauchyschen Funktionalgleichung, Sem. LV, no. 6 (1999), 6 pp., http://www.math.us.edu.pl/smdk
  12. [12] Volkmann P., O stabilnosci równan funkcyjnych o jednej zmiennej, Sem. LV, no. 11 (2001), 6 pp., Errata ibid. no. 11bis (2003), 1 p., http://www.math.us.edu.pl/smdk
DOI: https://doi.org/10.1515/amsil-2016-0018 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 155 - 164
Submitted on: Jun 1, 2016
Accepted on: Sep 20, 2016
Published on: Sep 13, 2017
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Imke Toborg, Peter Volkmann, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.