Have a personal or library account? Click to login
Lie Derivations on Trivial Extension Algebras Cover

References

  1. [1] Bade W.G., Dales H.G., Lykova Z.A., Algebraic and strong splittings of extensions of Banach algebras, Mem. Amer. Math. Soc. 137 (1999), no. 656.
  2. [2] Benkovic D., Lie triple derivations of unital algebras with idempotents, Linear Multilinear Algebra 65 (2015), 141-165.
  3. [3] Cheung W.-S., Mappings on triangular algebras, PhD Dissertation, University of Victoria, 2000.
  4. [4] Cheung W.-S., Lie derivations of triangular algebras, Linear Multilinear Algebra 51 (2003), 299-310.10.1080/0308108031000096993
  5. [5] Du Y., Wang Y., Lie derivations of generalized matrix algebras, Linear Algebra Appl. 437 (2012), 2719-2726.10.1016/j.laa.2012.06.013
  6. [6] Ebrahimi Vishki H.R., Mirzavaziri M., Moafian F., Jordan higher derivations on trivial extension algebras, Commun. Korean Math. Soc. 31 (2016), 247-259.10.4134/CKMS.2016.31.2.247
  7. [7] Erfanian Attar A., Ebrahimi Vishki H.R., Jordan derivations on trivial extension algebras, J. Adv. Res. Pure Math. 6 (2014), 24-32.10.5373/jarpm.1923.011314
  8. [8] Ghahramani H., Jordan derivations on trivial extensions, Bull. Iranian Math. Soc. 39 (2013), 635-645.
  9. [9] Ji P., Qi W., Charactrizations of Lie derivations of triangular algebras, Linear Algebra Appl. 435 (2011), 1137-1146.10.1016/j.laa.2011.02.048
  10. [10] Martindale III W.S., Lie derivations of primitive rings, Michigan Math. J. 11 (1964), 183-187.
  11. [11] Moafian F., Higher derivations on trivial extension algebras and triangular algebras, PhD Thesis, Ferdowsi University of Mashhad, 2015.
  12. [12] Moafian F., Ebrahimi Vishki H.R., Lie higher derivations on triangular algebras revisited, Filomat 30 (2016), no. 12, 3187-3194.
  13. [13] Mokhtari A.H., Ebrahimi Vishki H.R., More on Lie derivations of generalized matrix algebras, Preprint 2015, arXiv: 1505.02344v1.
  14. [14] Wang Y., Lie n-derivations of unital algebras with idempotents, Linear Algebra Appl. 458 (2014), 512-525. 10.1016/j.laa.2014.06.029
  15. [15] Zhang Y., Weak amenability of module extensions of Banach algebras, Trans. Amer. Math. Soc. 354 (2002), 4131-4151. 10.1090/S0002-9947-02-03039-8
DOI: https://doi.org/10.1515/amsil-2016-0017 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 141 - 153
Submitted on: Apr 24, 2016
Accepted on: Sep 16, 2016
Published on: Sep 13, 2017
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Amir Hosein Mokhtari, Fahimeh Moafian, Hamid Reza Ebrahimi Vishki, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.