Have a personal or library account? Click to login
Numerical Solution of Time Fractional Schrödinger Equation by Using Quadratic B-Spline Finite Elements Cover

Numerical Solution of Time Fractional Schrödinger Equation by Using Quadratic B-Spline Finite Elements

By: Alaattin Esen and  Orkun Tasbozan  
Open Access
|Sep 2017

References

  1. [1] Dehghan M., Jalil M., Abbas S., Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Meth. Part. D. E. 26 (2010), 448-479.10.1002/num.20460
  2. [2] Ertürk V.S., Momani S., Solving systems of fractional differential equations using differential transform method, J. Comput. Appl. Math. 215 (2008), 142-151.10.1016/j.cam.2007.03.029
  3. [3] Esen A., Tasbozan O., An approach to time fractional gas dynamics equation: Quadratic B-spline Galerkin method, Appl. Math. Comput. 261 (2015), 330-336.
  4. [4] Esen A., Tasbozan O., Cubic B-spline collocation method for solving time fractional gas dynamics equation, Tbilisi Math. J. 8 (2015), 221-231.
  5. [5] Esen A., Tasbozan O., Numerical solution of time fractional Burgers equation, Acta Univ. Sapientiae Math. 7 (2015), 167-185.
  6. [6] Esen A., Tasbozan O., Numerical solution of time fractional Burgers equation by cubic B-spline finite elements, Mediterr. J. Math. 13 (20016), 1325-1337.10.1007/s00009-015-0555-x
  7. [7] Esen A., Tasbozan O., Ucar Y., Yagmurlu N.M., A B-spline collocation method for solving fractional diffusion and fractional diffusion-wave equations, Tbilisi Math. J. 8 (2015), 181-193.
  8. [8] Esen A., Ucar Y., Yagmurlu N.M., Tasbozan O., A Galerkin finite element method to solve fractional diffusion and fractional diffusion-wave equations, Math. Model. Anal. 18 (2013), 260-273.10.3846/13926292.2013.783884
  9. [9] Esen A., Yagmurlu N.M., Tasbozan O., Approximate analytical solution to timefractional damped Burger and Cahn-Allen equations, Appl. Math. Inf. Sci. 7 (2013), 1951-1956.10.12785/amis/070533
  10. [10] Jafari H., Momani S., Solving fractional diffusion and wave equations by modified homotopy perturbation method, Phys. Lett. A 370 (2007), 388-396.10.1016/j.physleta.2007.05.118
  11. [11] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.
  12. [12] Logan D.L., A first course in the finite element method, Fourth edition, Thomson, Toronto 2007.
  13. [13] Machado J.A.T., Silva M.F., Barbosa R.S., Jesus I.S., Reis C.M., Marcos M.G., Galhano A.F., Some applications of fractional calculus in engineering, Math. Probl. Eng. 2010, Article ID 639801, 34 pp., http://dx.doi.org/10.1155/2010/639801.10.1155/2010/639801
  14. [14] Miller K.S., Ross B., An introduction to the fractional calculus and fractional differantial equations, John Wiley, New York, 1993.
  15. [15] Mohebbi A., Abbaszadeh M., Dehghan M., The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics, Eng. Anal. Bound. Elem. 37 (2013), 475-485.10.1016/j.enganabound.2012.12.002
  16. [16] Momani S., Odibat Z., Analytical approach to linear fractional partial differential equations arising in fluid mechanics, Phys. Lett. A 355 (2006), 271-279.10.1016/j.physleta.2006.02.048
  17. [17] Momani S., Odibat Z., Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Soliton Fractals 31 (2007), 1248-1255. 10.1016/j.chaos.2005.10.068
  18. [18] Odibat Z., Momani S., A generalized differential transform method for linear partial differential equations of fractional order, Appl. Math. Lett. 21 (2008), 194-199.10.1016/j.aml.2007.02.022
  19. [19] Oldham K.B., Spainer J., The fractional calculus, Academic Press, New York, 1974.
  20. [20] Otteson N., Pettorson H., Introduction to the finite element method, Prentice Hall, London, 1992.
  21. [21] Podlubny I., Fractional differential equations, Academic Press, San Diego, 1999.
  22. [22] Prenter P.M., Splines and variasyonel methods, John Wiley, New York, 1975.
  23. [23] Shawagfeh N.T., Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput. 131 (2002), 517-529.
  24. [24] Tasbozan O., Esen A., Yagmurlu N.M., Ucar Y., A numerical solution to fractional diffusion equation for force-free case, Abstr. Appl. Anal. 2013, Article ID 187383, 6 pp., http://dx.doi.org/10.1155/2013/187383.10.1155/2013/187383
  25. [25] Yuste S.B., Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys. 216 (2006), 264-274.10.1016/j.jcp.2005.12.006
  26. [26] Yuste S.B., Acedo L., An explicit finite difference method and a new von Neumanntype stability analysis for fractional diffusion equations, SIAM J. Numer. Anal. 42 (2005), 1862-1874.10.1137/030602666
  27. [27] Wang Q., Homotopy perturbation method for fractional KdV-Burgers equation, Chaos Soliton Fractals 35 (2008), 843-850.10.1016/j.chaos.2006.05.074
  28. [28] Wei L., He Y., Zhang X., Wang S., Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation, Finite Elem. Anal. Des. 59 (2012), 28-34.10.1016/j.finel.2012.03.008
  29. [29] Wei L., Zhang X., Kumar S., Yildirim A., A numerical study based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional coupled Schrödinger system, Comput. Math. Appl. 64 (2012), 2603-2615.10.1016/j.camwa.2012.07.004
  30. [30] Wua G.C., Baleanu D., Variational iteration method for the Burgers flow with fractional derivatives-New Lagrange multipliers, Appl. Math. Model. 37 (2013), 6183-6190.10.1016/j.apm.2012.12.018
DOI: https://doi.org/10.1515/amsil-2016-0015 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 83 - 98
Submitted on: Jun 1, 2016
Accepted on: Aug 24, 2016
Published on: Sep 13, 2017
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2017 Alaattin Esen, Orkun Tasbozan, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.