Have a personal or library account? Click to login
Characterizations of Rotundity and Smoothness by Approximate Orthogonalities Cover

Characterizations of Rotundity and Smoothness by Approximate Orthogonalities

Open Access
|Sep 2016

References

  1. [1] Alsina C., Sikorska J., Santos Tomás M., Norm Derivatives and Characterizations of Inner Product Spaces, World Scientific, Hackensack, New Jersay, 2009.10.1142/7452
  2. [2] Chmieliński J., Wójcik P., On a ρ-orthogonality, Aequationes Math. 80 (2010), 45–55.10.1007/s00010-010-0042-1
  3. [3] Chmieliński J., Wójcik P., ρ-orthogonality and its preservation – revisited, in: Recent Developments in Functional Equation and Inequalities, Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw, 2013, pp. 17–30.10.4064/bc99-0-2
  4. [4] Dragomir S.S., Semi-inner products and applications, Nova Science Publishers, Inc., Hauppauge, New York, 2004.
  5. [5] Day M.M., Normed linear spaces, Ergeb. Math. Grenzgeb. 21, Springer, New York–Heidelberg, 1973.10.1007/978-3-662-09000-8
  6. [6] Giles J.R., Classes of semi-inner-product spaces, Trans. Amer. Math. Soc. 129 (1967), 436–446.10.1090/S0002-9947-1967-0217574-1
  7. [7] Lumer G., Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29–43.10.1090/S0002-9947-1961-0133024-2
  8. [8] Wójcik P., Characterizations of smooth spaces by approximate orthogonalities, Aequationes Math. 89 (2015), 1189–1194.10.1007/s00010-014-0293-3
DOI: https://doi.org/10.1515/amsil-2016-0011 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 193 - 201
Submitted on: Mar 1, 2016
Accepted on: Jun 8, 2016
Published on: Sep 23, 2016
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 Tomasz Stypuła, Paweł Wójcik, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.