Have a personal or library account? Click to login
The Motivic Igusa Zeta Series of Some Hypersurfaces Non-Degenerated with Respect to their Newton Polyhedron Cover

The Motivic Igusa Zeta Series of Some Hypersurfaces Non-Degenerated with Respect to their Newton Polyhedron

By: Hans Schoutens  
Open Access
|Sep 2016

References

  1. [1] Artal Bartolo E., Cassou-Noguès P., Luengo I., Melle Hernández A., Quasi-ordinary power series and their zeta functions, Mem. Amer. Math. Soc. 178 (2005), no. 841, vi+85 pp.10.1090/memo/0841
  2. [2] Bosch S., Lütkebohmert W., Raynaud M., Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990.10.1007/978-3-642-51438-8
  3. [3] Denef J., Report on Igusa’s local zeta function, Séminaire Bourbaki Vol. 1990/91, Astérisque (1991), no. 201–203, Exp. No. 741 (1992), 359–386.
  4. [4] Denef J., Hoornaert K., Newton polyhedra and Igusa’s local zeta function, J. Number Theory 89 (2001), no. 1, 31–64.
  5. [5] Denef J., Loeser F., Motivic Igusa zeta functions, J. Algebraic Geom. 7 (1998), no. 3, 505–537.
  6. [6] Denef J., Hoornaert K., Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), no. 1, 201–232.
  7. [7] Denef J., Hoornaert K., On some rational generating series occurring in arithmetic geometry, in: Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, pp. 509–526.10.1515/9783110198133.1.509
  8. [8] Eisenbud D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995.10.1007/978-1-4612-5350-1
  9. [9] Guibert G., Espaces d’arcs et invariants d’Alexander, Comment. Math. Helv. 77 (2002), no. 4, 783–820.
  10. [10] Hartshorne R., Algebraic geometry, Springer-Verlag, New York, 1977.10.1007/978-1-4757-3849-0
  11. [11] Igusa J., A stationary phase formula for p-adic integrals and its applications, in: Algebraic geometry and its applications (West Lafayette, IN, 1990), Springer, New York, 1994, pp. 175–194.10.1007/978-1-4612-2628-4_10
  12. [12] Igusa J., An introduction to the theory of local zeta functions, AMS/IP Studies in Advanced Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2000.
  13. [13] Lichtin B., Meuser D., Poles of a local zeta function and Newton polygons, Compositio Math. 55 (1985), no. 3, 313–332.
  14. [14] Matsumura H., Commutative ring theory, Cambridge University Press, Cambridge, 1986.10.1017/CBO9781139171762
  15. [15] Saia M.J., Zuniga-Galindo W.A., Local zeta function for curves, non-degeneracy conditions and Newton polygons, Trans. Amer. Math. Soc. 357 (2005), no. 1, 59–88.
  16. [16] Schoutens H., Classifying singularities up to analytic extensions of scalars is smooth, Ann. Pure Appl. Logic 162 (2011), 836–852.10.1016/j.apal.2011.02.005
  17. [17] Schoutens H., Schemic Grothendieck rings I: motivic sites, Preprint 2011.
  18. [18] Schoutens H., Schemic Grothendieck rings II: jet schemes and motivic integration, Preprint 2011.
  19. [19] Varchenko A., Zeta-function of monodromy and Newton’s diagram, Invent. Math. 37 (1976), no. 3, 253–262.
  20. [20] Veys W., Poles of Igusa’s local zeta function and monodromy, Bull. Soc. Math. France 121 (1993), no. 4, 545–598.
  21. [21] Veys W., Determination of the poles of the topological zeta function for curves, Manuscripta Math. 87 (1995), no. 4, 435–448.
  22. [22] Zúñiga-Galindo W., Igusa’s local zeta functions of semiquasihomogeneous polynomials, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3193–3207.
  23. [23] Zúñiga-Galindo W., Local zeta functions and Newton polyhedra, Nagoya Math. J. 172 (2003), 31–58.10.1017/S0027763000008631
DOI: https://doi.org/10.1515/amsil-2016-0010 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 143 - 179
Submitted on: Apr 14, 2016
Accepted on: Jun 25, 2016
Published on: Sep 23, 2016
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 Hans Schoutens, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.