Have a personal or library account? Click to login
Reverse Jensen’s type Trace Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Spaces Cover

Reverse Jensen’s type Trace Inequalities for Convex Functions of Selfadjoint Operators in Hilbert Spaces

Open Access
|Sep 2016

References

  1. [1] Ando T., Matrix Young inequalities, Oper. Theory Adv. Appl. 75 (1995), 33–38.
  2. [2] Bellman R., Some inequalities for positive definite matrices, in: E.F. Beckenbach (Ed.), General Inequalities 2, Proceedings of the 2nd International Conference on General Inequalities, Birkhäuser, Basel, 1980, pp. 89–90.10.1007/978-3-0348-6324-7_8
  3. [3] Belmega E.V., Jungers M., Lasaulce S., A generalization of a trace inequality for positive definite matrices, Aust. J. Math. Anal. Appl. 7 (2010), no. 2, Art. 26, 5 pp.
  4. [4] Carlen E.A., Trace inequalities and quantum entropy: an introductory course, in: Entropy and the quantum, Contemp. Math. 529, Amer. Math. Soc., Providence, RI, 2010, pp. 73–140.10.1090/conm/529/10428
  5. [5] Chang D., A matrix trace inequality for products of Hermitian matrices, J. Math. Anal. Appl. 237 (1999), 721–725.10.1006/jmaa.1999.6433
  6. [6] Chen L., Wong C., Inequalities for singular values and traces, Linear Algebra Appl. 171 (1992), 109–120.10.1016/0024-3795(92)90253-7
  7. [7] Coop I.D., On matrix trace inequalities and related topics for products of Hermitian matrix, J. Math. Anal. Appl. 188 (1994), 999–1001.10.1006/jmaa.1994.1475
  8. [8] Dragomir S.S., A converse result for Jensen’s discrete inequality via Gruss’ inequality and applications in information theory, An. Univ. Oradea Fasc. Mat. 7 (1999/2000), 178–189.
  9. [9] Dragomir S.S., On a reverse of Jessen’s inequality for isotonic linear functionals, J. Ineqal. Pure Appl. Math. 2 (2001), No. 3, Art. 36.
  10. [10] Dragomir S.S., A Grüss type inequality for isotonic linear functionals and applications, Demonstratio Math. 36 (2003), no. 3, 551–562. Preprint RGMIA Res. Rep. Coll. 5 (2002), Suplement, Art. 12. Available at http://rgmia.org/v5(E).php.10.1515/dema-2003-0308
  11. [11] Dragomir S.S., Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74 (2006), no. 3, 471–476.
  12. [12] Dragomir S.S., Bounds for the deviation of a function from the chord generated by its extremities, Bull. Aust. Math. Soc. 78 (2008), no. 2, 225–248.
  13. [13] Dragomir S.S., Grüss’ type inequalities for functions of selfadjoint operators in Hilbert spaces. Preprint RGMIA Res. Rep. Coll. 11(e) (2008), Art. 11. Available at http://rgmia.org/v11(E).php].
  14. [14] Dragomir S.S., Some inequalities for convex functions of selfadjoint operators in Hilbert spaces, Filomat 23 (2009), no. 3, 81–92. Preprint RGMIA Res. Rep. Coll. 11(e) (2008), Art. 10.
  15. [15] Dragomir S.S., Some Jensen’s type inequalities for twice differentiable functions of selfadjoint operators in Hilbert spaces, Filomat 23 (2009), no. 3, 211–222. Preprint RGMIA Res. Rep. Coll. 11(e) (2008), Art. 13.
  16. [16] Dragomir S.S., Some new Grüss’ type inequalities for functions of selfadjoint operators in Hilbert spaces, Sarajevo J. Math. 6(18) (2010), no. 1, 89–107. Preprint RGMIA Res. Rep. Coll. 11(e) (2008), Art. 12. Available at http://rgmia.org/v11(E).php.
  17. [17] Dragomir S.S., New bounds for the Čebyšev functional of two functions of selfadjoint operators in Hilbert spaces, Filomat 24 (2010), no. 2, 27–39.
  18. [18] Dragomir S.S., Some Jensen’s type inequalities for log-convex functions of selfadjoint operators in Hilbert spaces, Bull. Malays. Math. Sci. Soc. 34 (2011), no. 3, 445–454. Preprint RGMIA Res. Rep. Coll. 13 (2010), Suplement, Art. 2.
  19. [19] Dragomir S.S., Some reverses of the Jensen inequality for functions of selfadjoint operators in Hilbert spaces, J. Ineq. & Appl. (2010), Art. ID 496821. Preprint RGMIA Res. Rep. Coll. 11(e) (2008), Art. 15. Available at http://rgmia.org/v11(E).php.
  20. [20] Dragomir S.S., Some Slater’s type inequalities for convex functions of selfadjoint operators in Hilbert spaces, Rev. Un. Mat. Argentina 52(2011), no. 1, 109–120. Preprint RGMIA Res. Rep. Coll. 11(e) (2008), Art. 7.
  21. [21] Dragomir S.S., Hermite-Hadamard’s type inequalities for operator convex functions, Appl. Math. Comp. 218 (2011), 766–772. Preprint RGMIA Res. Rep. Coll. 13 (2010), no. 1, Art. 7.10.1016/j.amc.2011.01.056
  22. [22] Dragomir S.S., Hermite-Hadamard’s type inequalities for convex functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 13 (2010), no. 2, Art 1.
  23. [23] Dragomir S.S., New Jensen’s type inequalities for differentiable log-convex functions of selfadjoint operators in Hilbert spaces, Sarajevo J. Math. 19 (2011), no. 1, 67–80. Preprint RGMIA Res. Rep. Coll. 13 (2010), Suplement, Art. 2.
  24. [24] Dragomir S.S., Operator Inequalities of the Jensen, Čebyšev and Grüss Type, Springer Briefs in Mathematics, Springer, New York, 2012.10.1007/978-1-4614-1521-3
  25. [25] Dragomir S.S., Operator Inequalities of Ostrowski and Trapezoidal Type, Springer Briefs in Mathematics, Springer, New York, 2012.10.1007/978-1-4614-1779-8
  26. [26] Dragomir S.S., Some trace inequalities for convex functions of selfadjoint operators in Hilbert spaces. Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 115. Available at http://rgmia.org/papers/v17/v17a115.pdf.
  27. [27] Dragomir S.S., Jensen’s type trace inequalities for convex functions of selfadjoint operators in Hilbert spaces. Preprint RGMIA Res. Rep. Coll. 17 (2014), Art. 116. Available at http://rgmia.org/papers/v17/v17a116.pdf.
  28. [28] Dragomir S.S., Ionescu N.M., Some converse of Jensen’s inequality and applications, Rev. Anal. Numér. Théor. Approx. 23 (1994), no. 1, 71–78.
  29. [29] Furuichi S., Lin M., Refinements of the trace inequality of Belmega, Lasaulce and Debbah, Aust. J. Math. Anal. Appl. 7 (2010), no. 2, Art. 23, 4 pp.
  30. [30] Furuta T., Mićić Hot J., Pečarić J., Seo Y., Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
  31. [31] Helmberg G., Introduction to Spectral Theory in Hilbert Space, John Wiley, New York, 1969.
  32. [32] Lee H.D., On some matrix inequalities, Korean J. Math. 16 (2008), no. 4, 565–571.
  33. [33] Liu L., A trace class operator inequality, J. Math. Anal. Appl. 328 (2007), 1484–1486.10.1016/j.jmaa.2006.04.092
  34. [34] Manjegani S., Hölder and Young inequalities for the trace of operators, Positivity 11 (2007), 239–250.10.1007/s11117-006-2054-6
  35. [35] Neudecker H., A matrix trace inequality, J. Math. Anal. Appl. 166 (1992), 302–303.10.1016/0022-247X(92)90344-D
  36. [36] Shebrawi K., Albadawi H., Operator norm inequalities of Minkowski type, J. Inequal. Pure Appl. Math. 9 (2008), Art. 26, 1–10.
  37. [37] Shebrawi K., Albadawi H., Trace inequalities for matrices, Bull. Aust. Math. Soc. 87 (2013), 139–148.10.1017/S0004972712000627
  38. [38] Simon B., Trace Ideals and Their Applications, Cambridge University Press, Cambridge, 1979.
  39. [39] Matković A., Pečarić J., Perić I., A variant of Jensen’s inequality of Mercer’s type for operators with applications, Linear Algebra Appl. 418 (2006), no. 2-3, 551–564.
  40. [40] McCarthy C.A., cp; Israel J. Math. 5 (1967), 249–271.10.1007/BF02771613
  41. [41] Mićić J., Seo Y., Takahasi S.-E., Tominaga M., Inequalities of Furuta and Mond-Pečarić, Math. Ineq. Appl. 2 (1999), 83–111.
  42. [42] Mond B., Pečarić J., Convex inequalities in Hilbert space, Houston J. Math. 19 (1993), 405–420.
  43. [43] Mond B., Pečarić J., On some operator inequalities, Indian J. Math. 35 (1993), 221–232.
  44. [44] B. Mond and J. Pečarić, Classical inequalities for matrix functions, Utilitas Math. 46 (1994), 155–166.
  45. [45] Riesz F., Sz-Nagy B., Functional Analysis, Dover Publications, New York, 1990.
  46. [46] Simić S., On a global upper bound for Jensen’s inequality, J. Math. Anal. Appl. 343 (2008), 414–419.10.1016/j.jmaa.2008.01.060
  47. [47] Ulukök Z., Türkmen R., On some matrix trace inequalities, J. Inequal. Appl. 2010, Art. ID 201486, 8 pp.10.1155/2010/201486
  48. [48] Yang X., A matrix trace inequality, J. Math. Anal. Appl. 250 (2000), 372–374.10.1006/jmaa.2000.7068
  49. [49] Yang X.M., Yang X.Q., Teo K.L., A matrix trace inequality, J. Math. Anal. Appl. 263 (2001), 327–331.10.1006/jmaa.2001.7613
  50. [50] Yang Y., A matrix trace inequality, J. Math. Anal. Appl. 133 (1988), 573–574.10.1016/0022-247X(88)90423-4
DOI: https://doi.org/10.1515/amsil-2016-0005 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 39 - 62
Submitted on: Mar 22, 2016
Accepted on: May 14, 2016
Published on: Sep 23, 2016
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 Sever S. Dragomir, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.