Have a personal or library account? Click to login
Random Dynamical Systems with Jumps and with a Function Type Intensity Cover

Random Dynamical Systems with Jumps and with a Function Type Intensity

Open Access
|Sep 2016

References

  1. [1] Davis M.H.A., Markov Models and Optimization, Chapman and Hall, London, 1993.10.1007/978-1-4899-4483-2
  2. [2] Diekmann O., Heijmans H.J., Thieme H.R., On the stability of the cells size distribution, J. Math. Biol. 19 (1984), 227–248.10.1007/BF00277748
  3. [3] Horbacz K., Asymptotic stability of a system of randomly connected transformations on Polish spaces, Ann. Polon. Math. 76 (2001), 197–211.10.4064/ap76-3-3
  4. [4] Horbacz K., Invariant measures for random dynamical systems, Dissertationes Math. 451 (2008), 68 pp.10.4064/dm451-0-1
  5. [5] Kazak J., Piecewise-deterministic Markov processes, Annales Polonici Mathematici 109 (2013), 279–296.10.4064/ap109-3-4
  6. [6] Lasota A., Yorke J.A., Lower Bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41–77.
  7. [7] Lipniacki T., Paszek P., Marciniak-Czochra A., Brasier A.R., Kimel M., Transcriptional stochasticity in gene expression, J. Theor. Biol. 238 (2006), 348–367.10.1016/j.jtbi.2005.05.03216039671
  8. [8] Snyder D., Random Point Processes, Wiley, New York, 1975.
  9. [9] Szarek T., Invariant measures for nonexpansive Markov operators on Polish spaces, Dissertationes Math. 415 (2003), 62 pp.10.4064/dm415-0-1
DOI: https://doi.org/10.1515/amsil-2016-0004 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 63 - 87
Submitted on: Jan 13, 2016
Accepted on: Apr 19, 2016
Published on: Sep 23, 2016
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 Joanna Kubieniec, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.