Have a personal or library account? Click to login
Strong Unique Ergodicity of Random Dynamical Systems on Polish Spaces Cover

Strong Unique Ergodicity of Random Dynamical Systems on Polish Spaces

By: Paweł Płonka  
Open Access
|Sep 2016

References

  1. [1] Arnold L., Random dynamical systems, Springer Monographs in Mathematics, Springer, Berlin, 1998.10.1007/978-3-662-12878-7
  2. [2] Crauel H., Random probability measures on Polish spaces, Series Stochastics Monographs, Vol. 11, Taylor & Francis, London, 2002.10.1201/b12601
  3. [3] Crauel H., Flandoli F., Attractors for random dynamical systems, Probab. Theory Relat. Fields 100 (1994), 365–393.10.1007/BF01193705
  4. [4] Lasota A., Yorke J.A., Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41–77.
  5. [5] Szarek T., The stability of Markov operators on Polish spaces, Studia Math. 143 (2000), 145–152.10.4064/sm-143-2-145-152
  6. [6] Szarek T., Invariant measures for non-expansive Markov operators on Polish spaces, Dissertationes Math. 415 (2003), 62 pp.10.4064/dm415-0-1
  7. [7] Valadier M., Young measures, in: Methods of Nonconvex Analysis (Varrenna 1989), Lecture Notes in Math. 1446, Springer, Berlin, 1990, pp. 152–188.
DOI: https://doi.org/10.1515/amsil-2016-0002 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 129 - 142
Submitted on: May 22, 2015
Published on: Sep 23, 2016
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 Paweł Płonka, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.