Have a personal or library account? Click to login
On the Normal Stability of Functional Equations Cover

On the Normal Stability of Functional Equations

By: Zenon Moszner  
Open Access
|Sep 2016

References

  1. [1] Bahyrycz A., Forti’s example on an unstable homomorphism equation, Aequationes Math. 74 (2007), 310–313.10.1007/s00010-007-2882-x
  2. [2] Baker J.A., Lawrence J., Zorzitto F., The stability of the equation f(x + y) = f(x)f(y), Proc. Amer. Math. Soc. 74 (1979), 242–246.
  3. [3] Baker J.A., The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), 411–416.10.1090/S0002-9939-1980-0580995-3
  4. [4] Batko B., Stability of Dhombres’ equation, Bull. Austral. Math. Soc. 70 (2004), 499–505.10.1017/S0004972700034754
  5. [5] Cholewa P.W., The stability of the sine equation, Proc. Amer. Math. Soc. 88 (1983), 631–634.10.1090/S0002-9939-1983-0702289-8
  6. [6] Cholewa P.W., Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76–86.10.1007/BF02192660
  7. [7] Chudziak J., Approximate dynamical systems on interval, Appl. Math. Lett. 25 (2012), no. 3, 352–357.
  8. [8] Forti G.L., The stability of homomorphisms and amenability, with applications to functional equations, Abh. Math. Sem. Univ. Hamburg 57 (1987), 215–226.10.1007/BF02941612
  9. [9] Gavruta P., On the stability of some functional equations, in: Stability of mappings of Hyers–Ulam type, Hadronic Press Collection of Original Articles, Hadronic Press, Palm Harbor, Fla, USA, 1994, pp. 93–98.
  10. [10] Gronau D., 21 Problem, Aequationes Math. 39 (1990), 311–312.
  11. [11] Jabotinsky E., Analitic iteration, Trans. Amer. Math. Soc. 118 (1963), 457–477.
  12. [12] Mach A., Moszner Z., On the stability of the translation equation in some classes functions, Aequationes Math. 72 (2006), 191–197.10.1007/s00010-006-2833-y
  13. [13] Moszner Z., The translation equation and its application, Demonstratio Math. 6 (1973), 309–327.
  14. [14] Moszner Z., Structure de l’automate plein, réduit et inversible, Aequationes Math. 9 (1973), 46–59.10.1007/BF01838188
  15. [15] Moszner Z., Les équations et les inégalités liées á l’équation de translation, Opuscula Math. 19 (1999), 19–43.
  16. [16] Moszner Z., On the stability of functional equations, Aequationes Math. 77 (2009), 33–88.10.1007/s00010-008-2945-7
  17. [17] Moszner Z., On stability of some functional equations and topology of their target spaces, Ann. Univ. Paedagog. Crac. Stud. Math. 11 (2012), 69–94.
  18. [18] Moszner Z., On the stability of the squares of some functional equations, Ann. Univ. Paedagog. Crac. Stud. Math. 14 (2015), 81–104.
  19. [19] Moszner Z., Przebieracz B., Is the dynamical system stable?, Aequationes Math. 89 (2015), 279–296.10.1007/s00010-014-0330-2
  20. [20] Nikodem K., The stability of the Pexider equation, Ann. Math. Sil. 5 (1991), 91–93.
  21. [21] Przebieracz B., On the stability of the translation equation, Publ. Math. 75 (2009), no. 1–2, 285–298.
  22. [22] Przebieracz B., On the stability of the translation equation and dynamical systems, Nonlinear Anal. 75 (2012), no. 4, 1980–1988.
  23. [23] Przebieracz B., Dynamical systems and their stability, Ann. Math. Sil. 28 (2014), 107–109.
  24. [24] Sibirsky S., Introduction to topological dynamics, Noordhoff International Publishing, Leiden, 1975.10.1007/978-94-010-2308-5
DOI: https://doi.org/10.1515/amsil-2016-0001 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 111 - 128
Submitted on: Sep 28, 2015
Accepted on: Jan 7, 2016
Published on: Sep 23, 2016
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 Zenon Moszner, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.