Have a personal or library account? Click to login
A Note on Additive Groups of Some Specific Associative Rings Cover

A Note on Additive Groups of Some Specific Associative Rings

Open Access
|Sep 2016

References

  1. [1] Aghdam A.M., Square subgroup of an Abelian group, Acta. Sci. Math. 51 (1987), 343–348.
  2. [2] Aghdam A.M., Karimi F., Najafizadeh A., On the subgroups of torsion-free groups which are subrings in every ring, Ital. J. Pure Appl. Math. 31 (2013), 63–76.
  3. [3] Aghdam A.M., Najafizadeh A., Square submodule of a module, Mediterr. J. Math. 7 (2010), no. 2, 195–207.
  4. [4] Andruszkiewicz R.R., Woronowicz M., On associative ring multiplication on abelian mixed groups, Comm. Algebra 42 (2014), no. 9, 3760–3767.
  5. [5] Andruszkiewicz R.R., Woronowicz M., On SI-groups, Bull. Aust. Math. Soc. 91 (2015), 92–103.10.1017/S0004972714000641
  6. [6] Chekhlov A.R., On abelian groups, in which all subgroups are ideals, Vestn. Tomsk. Gos. Univ. Mat. Mekh. (2009), no. 3(7), 64–67
  7. [7] Feigelstock S., Additive groups of rings. Vol. I, Pitman Advanced Publishing Program, Boston, 1983.
  8. [8] Feigelstock S., Additive groups of rings whose subrings are ideals, Bull. Austral. Math. Soc. 55 (1997), 477–481.10.1017/S0004972700034110
  9. [9] Feigelstock S., Rings in which a power of each element is an integral multiple of the element, Archiv der Math. 32 (1979), 101–103.10.1007/BF01238475
  10. [10] Fuchs L., Infinite abelian groups. Vol. I, Academic Press, New York-London, 1970.
  11. [11] Fuchs L., Infinite abelian groups. Vol. II, Academic Press, New York-London, 1973.
  12. [12] Kompantseva E.I., Absolute nil-ideals of Abelian groups, Fundam. Prikl. Mat. 17 (2012), no. 8, 63–76.
  13. [13] Kompantseva E.I., Abelian dqt-groups and rings on them, Fundam. Prikl. Mat. 18 (2013), no. 3, 53–67.
  14. [14] O’Neill J.D., Rings whose additive subgroup are subrings, Pacific J. Math. 66 (1976), no. 2, 509–522.
  15. [15] Pham Thi Thu Thuy, Torsion abelian RAI-groups, J. Math. Sci. (N. Y.) 197 (2014), no. 5, 658–678.
  16. [16] Pham Thi Thu Thuy, Torsion abelian afi-groups, J. Math. Sci. (N. Y.) 197 (2014), no. 5, 679–683.
DOI: https://doi.org/10.1515/amsil-2015-0013 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 219 - 229
Submitted on: Mar 4, 2015
Accepted on: Oct 7, 2015
Published on: Sep 23, 2016
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2016 Mateusz Woronowicz, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.