Have a personal or library account? Click to login
Exponential Convergence For Markov Systems Cover
Open Access
|Sep 2015

References

  1. [1] Barnsley M.F., Demko S.G., Elton J.H., Geronimo J.S., Invariant measures for Markov processes arising from iterated function systems with place dependent probabilities, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), 367–394.
  2. [2] Hairer M., Exponential mixing properties of stochastic PDEs through asymptotic coupling, Probab. Theory Related Fields 124 (2002), 345–380.10.1007/s004400200216
  3. [3] Hairer M., Mattingly J., Scheutzow M., Asymptotic coupling and a general form of Harris’ theorem with applications to stochastic delay equations, Probab. Theory Related Fields 149 (2011), no. 1, 223–259.
  4. [4] Horbacz K., Szarek T., Irreducible Markov systems on Polish spaces, Studia Math. 177 (2006), no. 3, 285–295.
  5. [5] Horbacz K.,Ślęczka M., Law of large numbers for random dynamical systems, Preprint 2013, arXiv:1304.6863.
  6. [6] Kapica R.,Ślęczka M., Random iteration with place dependent probabilities, Preprint 2012, arXiv:1107.0707v2.
  7. [7] Mauldin R.D., Williams S.C., Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc. 309 (1988), 811–829.10.1090/S0002-9947-1988-0961615-4
  8. [8] Mauldin R.D., Urbański M., Graph directed Markov systems: geometry and dynamics of limit sets, Cambridge University Press, Cambridge, 2003.10.1017/CBO9780511543050
  9. [9] Rachev S.T., Probability metrics and the stability of stochastic models, John Wiley, New York, 1991.
  10. [10]Ślęczka M., The rate of convergence for iterated function systems, Studia Math. 205 (2011), no. 3, 201–214.
  11. [11] Werner I., Ergodic theorem for contractive Markov systems, Nonlinearity 17 (2004), 2303–2313.10.1088/0951-7715/17/6/016
  12. [12] Werner I., Contractive Markov systems, J. London Math. Soc. (2) 71 (2005), 236–258.10.1112/S0024610704006088
  13. [13] Wojewódka H. Exponential rate of convergence for some Markov operators, Statist. Probab. Lett. 83 (2013), 2337–2347.10.1016/j.spl.2013.05.035
DOI: https://doi.org/10.1515/amsil-2015-0011 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 139 - 149
Submitted on: May 28, 2015
Published on: Sep 30, 2015
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2015 Maciej Ślęczka, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.