Have a personal or library account? Click to login
An Application Of The Theory Of Scale Of Banach Spaces Cover

An Application Of The Theory Of Scale Of Banach Spaces

Open Access
|Sep 2015

References

  1. [1] Adams R.A., Sobolev spaces, Academic Press, New York–San Francisco–London, 1975.
  2. [2] Cholewa J.W., Dłotko T., Global attractors in abstract parabolic problems, Cambridge University Press, Cambridge, 2000.10.1017/CBO9780511526404
  3. [3] Dawidowski Ł., Scales of Banach spaces, theory of interpolation and their applications, Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2012.
  4. [4] Evans L.C., Partial differential equations, Graduate Studies in Mathematics 19, American Mathematical Society, Providence, Rhode Island, 1998.
  5. [5] Gilbarg D., Trudinger N., Elliptic partial differential equations of second order, Reprint of the 1998 edition, Springer-Verlag, Berlin, 2001.10.1007/978-3-642-61798-0
  6. [6] Henry D., Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840, Springer-Verlag, Berlin, 1981.10.1007/BFb0089647
  7. [7] Komatsu H., Fractional powers of operators, Pacific J. Math. 19 (1966), 285–346.10.2140/pjm.1966.19.285
  8. [8] Yagi A., Abstract parabolic evolution equations and their applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.10.1007/978-3-642-04631-5
DOI: https://doi.org/10.1515/amsil-2015-0005 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 51 - 59
Submitted on: Apr 13, 2015
Published on: Sep 30, 2015
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2015 Łukasz Dawidowski, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.