Have a personal or library account? Click to login
Mixed Type Of Additive And Quintic Functional Equations Cover

Mixed Type Of Additive And Quintic Functional Equations

Open Access
|Sep 2015

References

  1. [1] Aoki T., On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950), 64–66.
  2. [2] Bodaghi A., Quintic functional equations in non-Archimedean normed spaces, J. Math. Extension 9 (2015), no. 3, 51–63.
  3. [3] Bodaghi A., Moosavi S.M., Rahimi H., The generalized cubic functional equation and the stability of cubic Jordan *-derivations, Ann. Univ. Ferrara 59 (2013), 235–250.10.1007/s11565-013-0185-9
  4. [4] Cădariu L., Radu V., Fixed points and the stability of quadratic functional equations, An. Univ. Timişoara, Ser. Mat. Inform. 41 (2003), 25–48.
  5. [5] Cădariu L., Radu V., On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber. 346 (2004), 43–52.
  6. [6] Czerwik S., On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg. 62 (1992), 59–64.10.1007/BF02941618
  7. [7] Hyers D.H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA. 27 (1941), 222–224.10.1073/pnas.27.4.222107831016578012
  8. [8] Hyers D.H., Isac G., Rassias Th.M., Stability of functional equations in several variables, Birkhauser, Boston, 1998.10.1007/978-1-4612-1790-9
  9. [9] Jung S.-M., Hyers–Ulam–Rassias stability of functional equations in nonlinear analysis, Springer, New York, 2011.10.1007/978-1-4419-9637-4
  10. [10] Kannappan P., Functional equations and inequalities with applications, Springer, New York, 2009.10.1007/978-0-387-89492-8
  11. [11] Najati A., Moghimi M.B., Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 337 (2008), 339–415.10.1016/j.jmaa.2007.03.104
  12. [12] Park C., Cui J., Eshaghi Gordji M., Orthogonality and quintic functional equations, Acta Math. Sinica, English Series 29 (2013), 1381–1390.
  13. [13] Rassias J.M., On approximation of approximately linear mappings by linear mapping, J. Funct. Anal. 46 (1982), no. 1, 126–130.
  14. [14] Rassias J.M., On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. (2) 108 (1984), no. 4, 445–446.
  15. [15] Rassias Th.M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.10.1090/S0002-9939-1978-0507327-1
  16. [16] Rassias Th.M., Brzdęk J., Functional equations in mathematical analysis, Springer, New York, 2012.10.1007/978-1-4614-0055-4
  17. [17] Ulam S.M., Problems in modern mathematics, Chapter VI, Science Ed., Wiley, New York, 1940.
  18. [18] Xu T.Z., Rassias J.M., Rassias M.J., Xu W.X., A fixed point approach to the stability of quintic and sextic functional equations in quasi-β-normed spaces, J. Inequal. Appl. (2010), Article ID 423231, 23 pp, doi:10.1155/2010/423231.10.1155/2010/423231
DOI: https://doi.org/10.1515/amsil-2015-0004 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 35 - 50
Submitted on: Jul 17, 2014
Published on: Sep 30, 2015
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2015 Abasalt Bodaghi, Pasupathi Narasimman, Krishnan Ravi, Behrouz Shojaee, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.