Have a personal or library account? Click to login
On Computer-Assisted Proving The Existence Of Periodic And Bounded Orbits Cover

On Computer-Assisted Proving The Existence Of Periodic And Bounded Orbits

Open Access
|Sep 2015

References

  1. [1] Appel K., Haken W., Every planar map is four colorable. Part I: Discharging, Illinois J. Math. 21 (1977), 429–490.
  2. [2] Appel K., Haken W., Koch J., Every planar map is four colorable. Part II: Reducibility, Illinois J. Math. 21 (1977), 491–567.
  3. [3] Bánhelyi B., Csendes T., Garay B.M., Hatvani L., A computer-assisted proof of ∑3-chaos in the forced damped pendulum equation, SIAM J. Appl. Dyn. Syst. 7 (2008), 843–867.10.1137/070695599
  4. [4] CAPA, http://www2.math.uu.se/~warwick/CAPA
  5. [5] CAPD, http://capd.ii.uj.edu.pl
  6. [6] Capiński M.J.,Computer assisted existence proofs of Lyapunov orbits at L2 and transversal intersections of invariant manifolds in the Jupiter-Sun PCR3BP, SIAM J. Appl. Dyn. Syst. 11 (2012), 1723–1753.10.1137/110847366
  7. [7] CHomP, http://chomp.rutgers.edu
  8. [8] Eckmann J.-P., Koch H., Wittwer P., A computer-assisted proof of universality for area-preserving maps, Mem. Amer. Math. Soc. 47 (1984), 1–121.
  9. [9] Galias Z., Computer assisted proof of chaos in the Muthuswamy-Chua memristor circuit, Nonlinear Theory Appl. IEICE 5 (2014), 309–319.10.1587/nolta.5.309
  10. [10] Galias Z., Tucker W., Numerical study of coexisting attractors for the Hénon map, Int. J. Bifurcation Chaos 23 (2013), no. 7, 1330025, 18 pp.10.1142/S0218127413300255
  11. [11] Gidea M., Zgliczyński P., Covering relations for multidimensional dynamical systems, J. Differential Equations 202 (2004), 33–58.10.1016/j.jde.2004.03.014
  12. [12] Hales T.C., A proof of the Kepler conjecture, Ann. of Math. (2) 162 (2005), 1065–1185.10.4007/annals.2005.162.1065
  13. [13] Hales T.C. et al., A formal proof of the Kepler conjecture, preprint (2015), http://arxiv.org/pdf/1501.02155.pdf
  14. [14] Hass J., Schlafly R., Double bubbles minimize, Ann. of Math. (2) 151 (2000), 459–515.10.2307/121042
  15. [15] Hassard B., Zhang J., Existence of a homoclinic orbit of the Lorenz system by precise shooting, SIAM J. Math. Anal. 25 (1994), 179–196.10.1137/S0036141092234827
  16. [16] Hastings S.P., Troy W.C., A shooting approach to the Lorenz equations, Bull. Amer. Math. Soc. 27 (1992), 128–131.10.1090/S0273-0979-1992-00327-0
  17. [17] Hickey T., Ju Q., van Emden M.H., Interval arithmetic: From principles to implementation, J. ACM 48 (2001), 1038–1068.10.1145/502102.502106
  18. [18] Hutchings M., Morgan F., Ritoré M., Ros A., Proof of the double bubble conjecture, Ann. of Math. (2) 155 (2002), 459–489.10.2307/3062123
  19. [19] Kapela T., Simó C., Computer assisted proofs for non-symmetric planar choreographies and for stability of the Eight, Nonlinearity 20 (2007), 1241–1255.10.1088/0951-7715/20/5/010
  20. [20] Kapela T., Zgliczyński P., The existence of simple choreographies for the N-body problem – a computer assisted proof, Nonlinearity 16 (2003), 1899–1918.10.1088/0951-7715/16/6/302
  21. [21] Lam C.W.H., The search for a finite projective plane of order 10, Amer. Math. Monthly 98 (1991), 305–318.10.1080/00029890.1991.12000759
  22. [22] Lam C.W.H., Thiel L., Swiercz S., The non-existence of finite projective planes of order 10, Canad. J. Math. 41 (1989), 1117–1123.10.4153/CJM-1989-049-4
  23. [23] Lanford O.E., III, A computer-assisted proof of the Feigenbaum conjecture, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 427–434.10.1090/S0273-0979-1982-15008-X
  24. [24] Lanford O.E., III, Computer-assisted proofs in analysis, in: Proceedings of the International Congress of Mathematicians, Berkeley, California, USA, 1986, pp. 1385–1394.
  25. [25] Lorenz E.N., Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963), 130–141.10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
  26. [26] Mann A.L., A complete proof of the Robbins conjecture, preprint (2003).
  27. [27] McCune W., Solution of the Robbins problem, J. Autom. Reasoning 19 (1997), 263–276.10.1023/A:1005843212881
  28. [28] Mischaikow K., Mrozek M., Chaos in the Lorenz equations: A computer assisted proof, Bull. Amer. Math. Soc. (N.S.) 32 (1995), 66–72.10.1090/S0273-0979-1995-00558-6
  29. [29] Mischaikow K., Mrozek M., Chaos in the Lorenz equations: A computer assisted proof. II: Details, Math. Comp. 67 (1998), 1023–1046.
  30. [30] Mischaikow K., Mrozek M., Szymczak A., Chaos in the Lorenz equations: A computer assisted proof. III: Classical parameter values, J. Differential Equations 169 (2001), 17–56.10.1006/jdeq.2000.3894
  31. [31] Mischaikow K., Zgliczyński P., Rigorous numerics for partial differential equations: the Kuramoto-Sivashinsky equation, Found. Comput. Math. 1 (2001), 255–288.10.1007/s002080010010
  32. [32] Mizar project, http://mizar.org
  33. [33] Moeckel R., A computer-assisted proof of Saari’s conjecture for the planar three-body problem, Trans. Amer. Math. Soc. 357 (2005), 3105–3117.10.1090/S0002-9947-04-03527-5
  34. [34] Mrozek M., Leray functor and cohomological Conley index for discrete dynamical systems, Trans. Amer. Math. Soc. 318 (1990),149–178.10.1090/S0002-9947-1990-0968888-1
  35. [35] Mrozek M., From the theorem of Ważewski to computer assisted proofs in dynamics, Banach Center Publ. 34 (1995), 105–120.10.4064/-34-1-105-120
  36. [36] Mrozek M., Topological invariants, multivalued maps and computer assisted proofs in dynamics, Comput. Math. Appl. 32 (1996), 83–104.10.1016/0898-1221(96)00127-7
  37. [37] Mrozek M., Index pairs algorithms, Found. Comput. Math. 6 (2006), 457–493.10.1007/s10208-005-0182-1
  38. [38] Mrozek M., Srzednicki R., Topological approach to rigorous numerics of chaotic dynamical systems with strong expansion, Found. Comput. Math. 10 (2010), 191–220.10.1007/s10208-009-9053-5
  39. [39] Mrozek M., Srzednicki R., Weilandt F., A topological approach to the algorithmic computation of the Conley index for Poincaré maps, SIAM J. Appl. Dyn. Syst. 14 (2015), 1348–1386.10.1137/15M100794X
  40. [40] Mrozek M., Żelawski M., Heteroclinic connections in the Kuramoto-Sivashinsky equations, Reliab. Comput. 3 (1997), 277–285.10.1023/A:1009974824292
  41. [41] Robertson N., Sanders D., Seymour P., Thomas R., The four-colour theorem, J. Combin. Theory Ser. B 70 (1997), 2–44.10.1006/jctb.1997.1750
  42. [42] Tucker W., The Lorenz attractor exists, C.R. Math. Acad. Sci. Paris 328 (1999), 1197–1202.10.1016/S0764-4442(99)80439-X
  43. [43] Tucker W., A rigorous ODE solver and Smale’s 14th problem, Found. Comput. Math. 2 (2002), 53–117.10.1007/s002080010018
  44. [44] Wikipedia, Pentium FDIV bug, http://en.wikipedia.org/wiki/Pentium_FDIV_bug
  45. [45] Wilczak D., Chaos in the Kuramoto-Sivashinsky equations – a computer assisted proof, J. Differential Equations 194 (2003), 433–459.10.1016/S0022-0396(03)00104-9
  46. [46] Wilczak D., The existence of Shilnikov homoclinic orbits in the Michelson system: a computer assisted proof, Found. Comput. Math. 6 (2006), 495–535.10.1007/s10208-005-0201-2
  47. [47] Wilczak D., Zgliczyński P., Heteroclinic connections between periodic orbits in planar restricted circular three body problem – a computer assisted proof, Comm. Math. Phys. 234 (2003), 37–75.10.1007/s00220-002-0709-0
  48. [48] Wilczak D., Zgliczyński P., Period doubling in the Rössler system – a computer assisted proof, Found. Comput. Math. 9 (2009), 611–649.10.1007/s10208-009-9040-x
  49. [49] Wilczak D., Zgliczyński P., Computer assisted proof of the existence of homoclinic tangency for the Hénon map and for the forced-damped pendulum, SIAM J. Appl. Dyn. Syst. 8 (2009), 1632–1663.10.1137/090759975
  50. [50] Zgliczyński P., Computer assisted proof of chaos in the Rössler equations and in the Hénon map, Nonlinearity 10 (1997), 243–252.10.1088/0951-7715/10/1/016
  51. [51] Zgliczyński P., Rigorous numerics for dissipative partial differential equations II. Periodic orbit for the Kuramoto-Sivashinsky PDE – a computer assisted proof, Found. Comput. Math. 4 (2004), 157–185.10.1007/s10208-002-0080-8
DOI: https://doi.org/10.1515/amsil-2015-0001 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 7 - 17
Submitted on: Mar 1, 2015
Published on: Sep 30, 2015
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2015 Roman Srzednicki, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.