Have a personal or library account? Click to login
Review. Development, Applications, Benefits, Challenges and Limitations of the New Genome Engineering Technique. An Update Study Cover

Review. Development, Applications, Benefits, Challenges and Limitations of the New Genome Engineering Technique. An Update Study

Open Access
|Apr 2017

References

  1. 1. Yang GK, Jooyen C, Srinivasan C. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA. 1996;93:1156-1160.10.1073/pnas.93.3.1156400488577732
  2. 2. Carroll D, Charo RA. The societal opportunities and challenges of genome editing. Genome Biology. 2015;16(1):1-9.10.1186/s13059-015-0812-0463474026537374
  3. 3. Xue HY, Ji LJ, Gao AM, Liu P, He JD, Lu XJ. CRISPR-Cas9 for medical genetic screens: applications and future perspectives. J Med Genet. 2016;53:91-97.10.1136/jmedgenet-2015-10340926673779
  4. 4. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169:5429-5433.10.1128/jb.169.12.5429-5433.19872139683316184
  5. 5. Makarova SK, Haft DH, Barrangou R. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011;9:467-477.10.1038/nrmicro2577338044421552286
  6. 6. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-821.10.1126/science.1225829628614822745249
  7. 7. Lokody I. Correcting genetic defects with CRISPR-Cas9. Nat Rev Genet. 2014; 15:63.10.1038/nrg365624342922
  8. 8. Burgess JD. In vivo correction of genetic disease in adult mice. Nat Rev Genet. 2014; 15:291.10.1038/nrg3731
  9. 9. Burgess JD. Technology: A CRISPR genome-editing tool. Nat Rev Genet. 2013;14: 80-81.
  10. 10. Blake W, Esther VD, Jelle BB, el al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. PNAS. 2011;108(25): 10092-10097.10.1073/pnas.1102716108312184921536913
  11. 11. Josiane EG, Marie-E`ve D, Manuela V, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468: 67-72.10.1038/nature0952321048762
  12. 12. Davis AJ, Chen DJ. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. 2013;2(3):130-143.
  13. 13. Ledford H. Alternative CRISPR system could improve genome editing. Nature. 2015; 526:17.10.1038/nature.2015.1843226432219
  14. 14. Bernd Z, Jonathan SG, Omar OA. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell. 2015;163(3):759-771.10.1016/j.cell.2015.09.038463822026422227
  15. 15. Lander ES. The Heroes of CRISPR. Cell. 2016;164(1-2):18-28.10.1016/j.cell.2015.12.04126771483
  16. 16. CRISPR-Cpf1 May Outsnip CRISPR-Cas9. GEN News Highlights. http://www.genengnews.com/gen-news-highlights/crispr-cpf1-mayoutsnip-crispr-cas9/81251791/. [ accessed 26.Feb.2015].
  17. 17. Scientists discover new system for human genome editing with potential to increase power and precision of genome engineering. Broadinstitute News. https://www.broadinstitute.org/news/7272. [accessed 23.Feb.2016].
  18. 18. Yui S, Nakamura T, Sato T, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat Med. 2012;18, 618-623.
  19. 19. Gerald S, Koo BK, Sasselli V. Functional Repair of CFTR by CRISPR/ Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients. Cell. 2013;13(6): 653-658.
  20. 20. Patrick DH, Eric SL. Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell. 2014;157(6): 1262-1278.10.1016/j.cell.2014.05.010434319824906146
  21. 21. U.S National Library of Medicine. Huntington disease. Genetic Home Reference. https://ghr.nlm.nih.gov/condition/huntington-disease. 3 May 2016. [accessed 10.04.2016].
  22. 22. U.S National Library of Medicine. HTT Huntington. Genetic Home Reference. https://ghr.nlm.nih.gov/gene/HTT. 3 May 2016. [accessed 10.04.2016].
  23. 23. Bae S, Kweon J, Kim HS, Kim JS. Microhomology-based choice of Cas9 nuclease target sites. Nat Methods. 2014;11(7):705-706.10.1038/nmeth.301524972169
  24. 24. Li HL, Gee P, Ishida K, Hotta A. Efficient genomic correction methods in human iPS cells using CRISPR-Cas9 system. Methods. 2015;101:27-35.
  25. 25. Rajat M, Kiran M. Expanding the genetic editing tool kit: ZNFs, TALENs and CRISPR-Cas 9. The Journal of Clinical Investigation. 2014;124(10):4154-4161.10.1172/JCI72992419104725271723
  26. 26. Sara R, Federica U, Melanie H,et al. CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat. Cell Biol. 2012;14: 911-923.
  27. 27. Brennand KJ, Simone A, Jou J et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2012;473: 221-225.10.1038/nature09915339296921490598
  28. 28. Kannan R, Ventura A. The CRISPR revolution and its impact on cancer research. Swiss Med Wkly. 2015;145:w14230.10.4414/smw.2015.14230551243226661454
  29. 29. Wen WS, Yuan ZM, Ma SJ, Xu J, Yuan DT. Crispr-cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies. Int J Cancer. 2016;138:6;1328-1336.10.1002/ijc.2962626044706
  30. 30. Randall J, Sidi C, Yang Z, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 2014;159;440-455.10.1016/j.cell.2014.09.014426547525263330
  31. 31. Hu Z, Yu L, Zhu D, et al. Disruption of HPV16-E7 by CRISPR/Cas System Induces Apoptosis and Growth Inhibition in HPV16 Positive Human Cervical Cancer Cells. Biomed Res Int. 2014; Article ID:612823.10.1155/2014/612823412725225136604
  32. 32. Tang L, Jacson KS, Zhihong L, Edwin C, Francis JH, Zhenfeng D. Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma. Cancer Letters. 2016;373(1):109-118.10.1016/j.canlet.2016.01.030477267526806808
  33. 33. Wen WS, Yuan ZY, Ma SJ, Xu J, Yuan DT. CRISPR-Cas9 systems: versatile cancer modelling platforms and promising therapeutic strategies. Int J Cancer. 2016;138(6):1328-36.10.1002/ijc.2962626044706
  34. 34. Zhen S, Takahashi Y, Narita S, Yang YC, Li X. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome.Oncotarget. 2016. DOI: 10.18632/ oncotarget.14072.10.18632/oncotarget.14072535473828030843
  35. 35. Kim E, Hurtz C, Koehrer S, et al. Ibrutinib inhibits pre-BCR+ B-cell acute lymphoblastic leukemia progression by targeting BTK and BLK. Blood. 2016. doi.org/10.1182/blood-2016-06-722900.10.1182/blood-2016-06-722900537473228031181
  36. 36. Huibin T, Joseph BS. CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer: a personalized molecular surgical therapy. EMBO. 2016;8(2):83-85.
  37. 37. Xun LX, Leqiang S, Teng Y, et al. A CRISPR/Cas9 and Cre/Lox systembased express vaccine development strategy against reemerging Pseudorabies virus. Sci Rep. 2016; 6:19176.10.1038/srep19176472603626777545
  38. 38. Money of the genes: CRISPR attracts a lot of investors. News & Tips. 2016. http://allcompanies.website/2016/01/25/money-of-the-genescrispr-attracts-a-lot-of-investors/. [accesed 13.02.2016].
  39. 39. Wang G, Zhao N, Berkhout B, Das AT, et al. A Combinatorial CRISPRCas9 Attack on HIV-1 DNA Extinguishes All Infectious Provirus in Infected T Cell Cultures. Cell Rep. 2016;17(11):2819-2826.10.1016/j.celrep.2016.11.05727974196
  40. 40. Edward AP, Ryan BP, Benjamin JF, Jeffrey SG, Aijaz A, Robert GG. Future Therapy for Hepatitis B Virus: Role of Immunomodulators. Curr Hepatol Rep. 2016;15(4):237-244.10.1007/s11901-016-0315-9511229427917363
  41. 41. Zhengyan F, Botao Z, Wona D, et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 2013; 23:1229-1232.10.1038/cr.2013.114379023523958582
  42. 42. Mercx S, Tollet J, Magy B, Navarre C, Boutry M. Gene Inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 Suspension Cell. Front Plant Sci. 7:40. doi: 10.3389/fpls.2016.00040 http://dx.doi.org/10.3389/fpls.2016.00040. [accesed 01.02.2016].
  43. 43. Lombardo L, Coppola G, Zelasco S. New Technologies for Insect-Resistant and Herbicide-Tolerant Plants. Trends Biotechnol. 2016;34(1):49-57.10.1016/j.tibtech.2015.10.00626620971
  44. 44. Ain QU, Chung JY, Kim JH. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Control Release. 2015;205:120-127.10.1016/j.jconrel.2014.12.03625553825
  45. 45. Bing S, Liz HM, Yi G, Ying P. The Rise of CRISPR/Cas for Genome Editing in Stem Cells. Stem Cells Int. 2016;Volume 2016:17 pages. Article ID 8140168: doi:10.1155/2016/8140168.
  46. 46. Cho S W, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/ Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014; 24:132-141.10.1101/gr.162339.113387585424253446
  47. 47. Tang L, Jacson KS, Zhihong L, Edwin C, Francis JH, Zhenfeng D. Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma. Cancer Lett. 2016;373(1):109-118.10.1016/j.canlet.2016.01.030477267526806808
  48. 48. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351(6268):84-88.10.1126/science.aad5227471494626628643
  49. 49. Julie S, Jonathan W, David G. Opposition mounts to genetic modification of human embryos. http://mobile.reuters.com/article/healthNews/idUSKBN0TK33F20151201. [accesed 10.02.2016].
  50. 50. Puping L, Yanwen X, Xiya Z et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell. 2015; 6(5):363-372.10.1007/s13238-015-0153-5441767425894090
  51. 51. Xue W, Chen S, Yin H, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature. 2014;514:380-384.10.1038/nature13589419993725119044
  52. 52. Platt RJ, Chen S, Zhou Y, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014:159(2):440-450.10.1016/j.cell.2014.09.014426547525263330
  53. 53. Lu XJ, Qi X, Zheng DH, Ji LJ. Modeling cancer processes with CRISPRCas9. Trends Biotechnol. 2015;33:317-319.10.1016/j.tibtech.2015.03.00725908505
  54. 54. Katerine S, Michael B, Annelien B, et al. CRISPR germline engineering - the community speaks. Nature Biotechnology. 2015; 33:478-486.10.1038/nbt.322725965754
  55. 55. Ewen C. UK scientists gain licence to edit genes in human embryos. Nature. 2016;530,18-19.10.1038/nature.2016.1927026842037
  56. 56. Yanfang F, Jennifer AF, Cyd K. High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31(9):822-826.10.1038/nbt.2623377302323792628
  57. 57. Roni A. UNESCO panel of experts calls for ban on “editing” of human DNA to avoid unethical tampering with hereditary traits. UNESCO Media Service. 10 May 2016.
DOI: https://doi.org/10.1515/amma-2017-0007 | Journal eISSN: 2668-7763 | Journal ISSN: 2668-7755
Language: English
Page range: 4 - 9
Submitted on: Nov 7, 2016
Accepted on: Feb 3, 2017
Published on: Apr 20, 2017
Published by: University of Medicine, Pharmacy, Science and Technology of Targu Mures
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Andrei Crauciuc, Florin Tripon, Andreea Gheorghiu, Georgiana Nemes, Alina Boglis, Claudia Banescu, published by University of Medicine, Pharmacy, Science and Technology of Targu Mures
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.