Have a personal or library account? Click to login
New RP-HPLC Method for Separation of Naja haje haje Venom and Studies of its Bactericidal Effect Cover

New RP-HPLC Method for Separation of Naja haje haje Venom and Studies of its Bactericidal Effect

Open Access
|Feb 2016

References

  1. 1. Mebs D. Venomous and Poisonous Animals. A Handbook for Biologists, Toxicologists and Toxinologists, Physicians and Pharmacists. 1st Ed. Medpharm Scientific Publisher, Boca Raton: Stuttgart, Germany CRC Press. 2002:2.
  2. 2. Karmakar RN. Forensic Medicine and Toxicology, Oral, Practical & M.C.Q. 3rd Edition. Academic Publishers, Published by Bimal Kumar Dhur, Kolkta, India. 2010:57.
  3. 3. http://www.toxinology.org/
  4. 4. Birell GW, Earl S, Masci P. et al. Molecular diversity in venom from the Australian Brown snake, Pseudonaja textilis. Mol Cell Proteomics. 2006;5:379-389.10.1074/mcp.M500270-MCP200
  5. 5. Calvete JJ, Juarez P, Sanz L. Snake venomics, strategy and applications. J Mass Spectrom. 2007;42:1405-1414.10.1002/jms.1242
  6. 6. Smith CG, Vane JR. The discovery of captopril. FASEB (Fed Am Soc Exp Biol) J. 2003;17:799-789.
  7. 7. Bryan J. From snake venom to ACE inhibitor. The discovery and rise of captopril. Pharm J. 2009;282:455-456.
  8. 8. Chippaux JP, Williams V, White J. Snake venom variability: methods of study, results and interpretation. Toxicon. 1991;29:1279-1303.10.1016/0041-0101(91)90116-9
  9. 9. Bas M, Adams V, Suvorava T. Nonallergic angioedema; role of bradykinin. Allergy. 2007;62:842-856.10.1111/j.1398-9995.2007.01427.x
  10. 10. Craik DJ, Schroeder CI. Peptides from Mamba Venom as Pain Killers. Angew Chem Int Ed. 2013;52:3071-3073.10.1002/anie.201209851
  11. 11. Shanbhag VKL. Applications of snake venoms in treatment of cancer. Asian Pac J Trop Biomed. 2015;5(4):275-276.10.1016/S2221-1691(15)30344-0
  12. 12. Vyas VK, Brahmbhatt K, Bhatt H, Parmar U. Therapeutic potential of snake venom in cancer therapy: current perspectives. Asian Pac J Trop Biomed. 2013;3(2):156-162.10.1016/S2221-1691(13)60042-8
  13. 13. Finn R. Snake venom protein paralyzes cancer cells. J Natl Cancer Inst. 2001;93(4):261-262.10.1093/jnci/93.4.26111181769
  14. 14. Al-Sadoon M, Rabah DM, Badr G. Enhanced anticancer efficacy of snake venom combined with silica nanoparticles in a murine model of human multiple myeloma: Molecular targets for cell cycle arrest and apoptosis induction. Cell Immunol. 2013;284:129-136.10.1016/j.cellimm.2013.07.01623973876
  15. 15. El-Refael M, Sarkar N. Snake venom inhibits the growth of mouse mammary tumor cells in vitro and in vivo. Toxicon. 2009;54:33-41.10.1016/j.toxicon.2009.03.01719327376
  16. 16. Das T, Bhattacharya S, Biswas A. Inhibition of leukemic U937 cell growth by induction of apoptosis, cell cycle arrest and suppression of VEGF, MMP-2 and MMP-9 activities by cytotoxin protein NN-32 purified from Indian spectacled cobra (Naja naja) venom. Toxicon. 2013;65:1-4.10.1016/j.toxicon.2013.01.00423337397
  17. 17. Gordaliza M. Natural products as leads to anticancer drugs. Clin Trans Oncol. 2007;9:767-776.10.1007/s12094-007-0138-918158980
  18. 18. Samy RP, Chow VTK et al. Antimicrobial Proteins from Snake Venoms: Direct Bacterial Damage and Activation of Innate Immunity against Staphylococcus aureus Skin Infection. Curr. Med. Chem. 2011;18(33):5104-5113.
  19. 19. Costa Torres AF, Dantas RT, Toyama MH et al. Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: phosholipase A2 and L-amino acid oxidase. Toxicon, 2010;55:795-804.10.1016/j.toxicon.2009.11.01319944711
  20. 20. Nair DG, Fry BG, Alewood P et al. Antimicrobial activity of omwaprin, a new member of the waprin family of snake venom proteins. J Biol Chem. 2007;402:93-104;10.1042/BJ20060318178399117044815
  21. 21. Fenard D, Lambeau G, Valentin E et al. Secreted phospholipases A(2), a new class of HIV inhibitors that block virus entry into host cells. J Clin Invest. 1999;104:611-618.10.1172/JCI691540853910487775
  22. 22. Samy RP, Thong TWJ et al. Antibacterial activity of snake, scorpion and bee venoms: a comparison with purified venom phospholipase A2 enzymes. J Appl Micriobiol. 2007;102:650-659.10.1111/j.1365-2672.2006.03161.x17309613
  23. 23. Ständker L, Harvey AL, Béress L. et al. Improved method for the isolation, characterization and examination of neuromuscular and toxic properties of selected polypeptide fractions from the crude venom of the Taiwan cobra Naja naja atra. Toxicon 2012;60:623-631.10.1016/j.toxicon.2012.05.01322677803
  24. 24. Zaqueo KD, Kayano AM, Stábeli RG et al. Isolation and biochemical characterization of a new thrombin-like serine protease from Bothrops pirajai snake venom. Biomed Res Int. 2014;2014:1-13.10.1155/2014/595186395569524719874
  25. 25. Angulo Y, Castro A, Gutiérrez JM et al. Isolation and characterization of four medium-size disintegrins from the venom of Central American viperid snakes of the genera Antropoides, Bothrops, Cerrophidion and Crotalus. Biochemie 2014,107:376-384.10.1016/j.biochi.2014.10.01025457103
  26. 26. Hanane-Ziad-Meziane HF, Laraba-Djebari F. Purification, characterization and antibacterial activity of L-amino acid oxidase from Cerastes cereastes. J. Biochem. Mol. Toxic. 2014,28:347-354.10.1002/jbt.2157124817275
  27. 27. Nunes ES, Correia MTS et al. Purification of lectin with antibacterial activity from Bothrops leucurus snake venom. Comp. Biochem. Physiol., B: Comp. Biochem. 2011,159:57-63.10.1016/j.cbpb.2011.02.00121334449
  28. 28. El Hakim AE, Abouelella AMK et al. Purification and characterization of a cytotoxic neurotoxin-like protein from Naja Haje haje venom that induces mitochondrial apoptosis pathway. Arch. Toxicol. 2011,85:941-952.10.1007/s00204-010-0631-821240479
  29. 29. Botes DP, Strydom DJ. A neurotoxin, toxin alpha, from Egyptian cobra (Naja Haje Haje) venom. I. Purification, properties, and complete amino acid sequence. J. Biol. Chem. 1969;244:4147-4157.
  30. 30. Wen YL, Wu BJ, Chang LS et al. Antibacterial and membrane-damaging activities of β-bungarotoxin B chain. J Pept Sci. 2012;19:1-8.10.1002/psc.246323136049
  31. 31. Chen LW, Kao PH, Fu YS, Hu WP, Chang LS. Bactericidal effect of Naja nigricollis toxin γ is related to its membrane damaging activity. Peptides. 2011;32:1755-1763.10.1016/j.peptides.2011.06.02621762738
  32. 32. Samy RP, Al Qahtani et al. Sanke venom proteins: Development into Antimicrobial and Wound Healing Agents. Mini Rev Org Chem. 2014;11:4-14.10.2174/1570193X1101140402100131
  33. 33. Al Ahmadi AJ, Mirakabbadi AZ et al. Investigation of the antibacterial effect of venom of the Iranian snake Echis carinatus. Iran J Vet Sci Technol (IJVST). 2010;2:93-100.
  34. 34. Jalaei J, Fazeli M, Rajaian H, Shekarforoush SS. In vitro antibacterial effect of wasp (Vespa orientalis) venom. J venom Anim Toxins Incl Trop Dis. 2014;20:1-6.10.1186/1678-9199-20-22404593524955088
  35. 35. Zhao Z, Cao J, Li W et al. Imcroporin, a new cationic antimicrobial peptide from the venom of the scorpion Isometrus maculates. Antimicrob Agents Chemother. 2009;53(8):3472-3477. 10.1128/AAC.01436-08271565219451300
DOI: https://doi.org/10.1515/amma-2015-0113 | Journal eISSN: 2668-7763 | Journal ISSN: 2668-7755
Language: English
Page range: 90 - 94
Submitted on: Aug 10, 2015
|
Accepted on: Sep 21, 2015
|
Published on: Feb 9, 2016
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Şerban Andrei Gâz Florea, Diana Ciurca, Anca Mare, Adrian Man, Bogdan Cordoş, Anda-Lavinia Grama, Daniela-Lucia Muntean, published by University of Medicine, Pharmacy, Science and Technology of Targu Mures
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.