Have a personal or library account? Click to login
Cortical epileptogenesis of slowly kindled freely moving rats Cover

Cortical epileptogenesis of slowly kindled freely moving rats

Open Access
|Jan 2015

References

  1. 1. Smith PE. Introduction: The causes of epilepsy. Epilepsia. 2012 Sep;53 Suppl 4:1-2.10.1111/j.1528-1167.2012.03607.x
  2. 2. Bertram E. The relevance of kindling for human epilepsy. Epilepsia. 2007;48 Suppl 2:65-74.10.1111/j.1528-1167.2007.01068.x
  3. 3. Mazarati A, Bragin A, Baldwin R et al. Epileptogenesis after self-sustaining status epilepticus. Epilepsia. 2002;43 Suppl 5:74-80.10.1046/j.1528-1157.43.s.5.25.x
  4. 4. Milner B, Squire LR, Kandel ER. Cognitive neuroscience and the study of memory. Neuron. 1998 Mar;20(3):445-468.10.1016/S0896-6273(00)80987-3
  5. 5. Montgomery SM, Buzsaki G. Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14495-14500.10.1073/pnas.0701826104
  6. 6. Tellez-Zenteno JF, Hernandez-Ronquillo L. A review of the epidemiology of temporal lobe epilepsy. Epilepsy Res Treat. 2012;2012:630853.10.1155/2012/630853
  7. 7. Goddard GV, McIntyre DC, Leech CK. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol. 1969 Nov;25(3):295-330.10.1016/0014-4886(69)90128-9
  8. 8. McNamara JO. Kindling: an animal model of complex partial epilepsy. Ann Neurol. 1984;16 Suppl:S72-76.10.1002/ana.410160712
  9. 9. Sutula TP. Mechanisms of epilepsy progression: current theories and perspectives from neuroplasticity in adulthood and development. Epilepsy Res. 2004 Jul-Aug;60(2-3):161-171.10.1016/j.eplepsyres.2004.07.001
  10. 10. Paxinos G, Watson C. The Rat Brain in Steriotaxic Coordinates: Academic Press: San Diego; 1997.
  11. 11. Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972 Mar;32(3):281-294.10.1016/0013-4694(72)90177-0
  12. 12. Goldberg EM, Coulter DA. Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat Rev Neurosci. 2013 May;14(5):337-349.10.1038/nrn3482
  13. 13. Orban-Kis K, Metz J, Szilagy T. Allatmodellek jelentősege az epilepszia kutatasaban. Orvostudomanyi Ertesitő. 2008;81:88-91.
  14. 14. Dichter MA. Models of epileptogenesis in adult animals available for antiepileptogenesis drug screening. Epilepsy Res. 2006 Jan;68(1):31-35.10.1016/j.eplepsyres.2005.09.014
  15. 15. Curia G, Lucchi C, Vinet J et al. Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention of damage antiepileptogenic? Curr Med Chem. 2014;21(6):663-688.10.2174/0929867320666131119152201
  16. 16. Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 2004 May;73(1):1-60.10.1016/j.pneurobio.2004.03.009
  17. 17. Kandratavicius L, Balista PA, Lopes-Aguiar C et al. Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat. 2014;10:1693-1705.10.2147/NDT.S50371
  18. 18. Loscher W. Animal models of intractable epilepsy. Prog Neurobiol. 1997 Oct;53(2):239-258.10.1016/S0301-0082(97)00035-X
  19. 19. McIntyre DC, Kelly ME, Dufresne C. FAST and SLOW amygdala kindling rat strains: comparison of amygdala, hippocampal, piriform and perirhinal cortex kindling. Epilepsy Res. 1999 Jul;35(3):197-209.10.1016/S0920-1211(99)00012-1
  20. 20. Pitkanen A, Savander V, LeDoux JE. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci. 1997 Nov;20(11):517-523.10.1016/S0166-2236(97)01125-9
  21. 21. Adamec R, Blundell J, Burton P. Anxiolytic effects of kindling role of anatomical location of the kindling electrode in response to kindling of the right basolateral amygdala. Brain Res. 2004 Oct 22;1024(1-2):44-58.10.1016/j.brainres.2004.06.07415451366
  22. 22. Morales JC, Alvarez-Ferradas C, Roncagliolo M et al. A new rapid kindling variant for induction of cortical epileptogenesis in freely moving rats. Front Cell Neurosci. 2014;8:200.10.3389/fncel.2014.00200410782825100948
  23. 23. Ng MS, Hwang P, Burnham WM. Afterdischarge threshold reduction in the kindling model of epilepsy. Epilepsy Res. 2006 Dec;72(2-3):97-101.10.1016/j.eplepsyres.2006.06.007
  24. 24. Robinson N, Duncan P, Gehrt M et al. Histochemistry of trauma after electrode implantation and stimulation in the hippocampus. Arch Neurol. 1975 Feb;32(2):98-102.10.1001/archneur.1975.00490440048007
  25. 25. Ben Attia M, N'Gouemo P, Belaidi M et al. Kindling and electrode effects on the benzodiazepine receptors density of olfactory bulb and hippocampus after olfactory bulb kindling. Neurosci Lett. 1992 Aug 31;143(1-2):74-7810.1016/0304-3940(92)90236-Z
  26. 26. Loscher W, Wahnschaffe U, Honack D, Rundfeldt C. Does prolonged implantation of depth electrodes predispose the brain to kindling? Brain Res. 1995 Oct 30;697(1-2):197-204.10.1016/0006-8993(95)00843-F
  27. 27. Loscher W, Horstermann D, Honack D et al. Transmitter amino acid levels in rat brain regions after amygdala-kindling or chronic electrode implantation without kindling: evidence for a pro-kindling effect of prolonged electrode implantation. Neurochem Res. 1993 Jul;18(7):775-781.10.1007/BF00966772
  28. 28. McIntyre DC. The kindling phenomenon. In: Pitkanen A, Schwartzkroin PA, Moshe SL, editors. Models of seizure and epilepsy. Unites States of America: Elsevier Academic Press; 2005. p. 351-364.10.1016/B978-012088554-1/50030-X
  29. 29. Golarai G, Cavazos JE, Sutula TP. Activation of the dentate gyrus by pentylenetetrazol evoked seizures induces mossy fiber synaptic reorganization. Brain Res. 1992 Oct 16;593(2):257-264.10.1016/0006-8993(92)91316-7
  30. 30. Sutula TP, Ockuly J. Kindling, Spontaneous Seizures, and the Consequences of Epilepsy: More Than a Model. In: Pitkanen A, Schwartzkroin PA, Moshe SL, editors. Models of seizure and epilepsy. Unites States of America: Elsevier Academic Press; 2005. p. 395-406.10.1016/B978-012088554-1/50034-7
  31. 31. Lynch M, Sayin U, Golarai G, Sutula T. NMDA receptor-dependent plasticity of granule cell spiking in the dentate gyrus of normal and epileptic rats. J Neurophysiol. 2000 Dec;84(6):2868-2879.10.1152/jn.2000.84.6.286811110816
  32. 32. He XP, Kotloski R, Nef S et al. Conditional deletion of TrkB but not BDNF prevents epileptogenesis in the kindling model. Neuron. 2004 Jul 8;43(1):31-42.10.1016/j.neuron.2004.06.01915233915
  33. 33. Kotloski R, Lynch M, Lauersdorf S, Sutula T. Repeated brief seizures induce progressive hippocampal neuron loss and memory deficits. Prog Brain Res. 2002;135:95-110.10.1016/S0079-6123(02)35010-6
  34. 34. Scharfman HE, Sollas AL, Goodman JH. Spontaneous recurrent seizures after pilocarpine-induced status epilepticus activate calbindinimmunoreactive hilar cells of the rat dentate gyrus. Neuroscience. 2002;111(1):71-81.10.1016/S0306-4522(01)00599-1
  35. 35. Szyndler J, Wierzba-Bobrowicz T, Maciejak P et al. Pentylenetetrazolkindling of seizures selectively decreases [3H]-citalopram binding in the CA-3 area of rat hippocampus. Neurosci Lett. 2002 Dec 19;335(1):49-53.10.1016/S0304-3940(02)01141-2
  36. 36. Sayin U, Osting S, Hagen J et al. Spontaneous seizures and loss of axoaxonic and axo-somatic inhibition induced by repeated brief seizures in kindled rats. J Neurosci. 2003 Apr 1;23(7):2759-2768.10.1523/JNEUROSCI.23-07-02759.2003
  37. 37. Szilagyi T, Szava I, Metz EJ et al. Untangling the pathomechanisms of temporal lobe epilepsy-The promise of epileptic biomarkers and novel therapeutic approaches. Brain Res Bull. 2014 Oct;109C:1-12.10.1016/j.brainresbull.2014.08.004
  38. 38. Borck C, Jefferys JG. Seizure-like events in disinhibited ventral slices of adult rat hippocampus. J Neurophysiol. 1999 Nov;82(5):2130-2142.10.1152/jn.1999.82.5.2130
  39. 39. Lee AC, Wong RK, Chuang SC et al. Role of synaptic metabotropic glutamate receptors in epileptiform discharges in hippocampal slices. J Neurophysiol. 2002 Oct;88(4):1625-1633.10.1152/jn.2002.88.4.1625
  40. 40. Nyikos L, Lasztoczi B, Antal K et al. Desynchronisation of spontaneously recurrent experimental seizures proceeds with a single rhythm. Neuroscience. 2003;121(3):705-717. 10.1016/S0306-4522(03)00559-1
DOI: https://doi.org/10.1515/amma-2015-0003 | Journal eISSN: 2668-7763 | Journal ISSN: 2668-7755
Language: English
Page range: 249 - 253
Submitted on: Nov 11, 2014
Accepted on: Dec 1, 2014
Published on: Jan 27, 2015
Published by: University of Medicine, Pharmacy, Science and Technology of Targu Mures
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 K. Orbán-Kis, Iringó Száva, T. Szilágyi, published by University of Medicine, Pharmacy, Science and Technology of Targu Mures
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.