Have a personal or library account? Click to login
Interpretable decision-tree induction in a big data parallel framework Cover

Interpretable decision-tree induction in a big data parallel framework

Open Access
|Jan 2018

References

  1. AlSabti, K., Ranka, S. and Singh, V. (1998). Clouds: Classification for large or out-of-core datasets, Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 2-8.
  2. Amado, N., Gama, J. and Silva, F. (2001). Parallel implementation of decision tree learning algorithms, in P.10.1007/3-540-45329-6_4
  3. Brazdil and A. Jorge (Eds.), Progress in Artificial Intelligence, Springer, Berlin/Heidelberg, pp. 6-13.
  4. Amado, N., Gama, J. and Silva, F. (2003). Exploiting parallelism in decision tree induction, ECML/PKDDWorkshop on Parallel and Distributed Computing for Machine Learning, Cavtat/Dubrovnik, Croatia, pp. 13-22.
  5. Andrzejak, A., Langner, F. and Zabala, S. (2013). Interpretable models from distributed data via merging of decision trees, IEEE Symposium on Computational Intelligence and Data Mining (CIDM), Savannah, GA, USA, pp. 1-9.
  6. Bekkerman, R., Bilenko, M. and Langford, J. (2011). Scaling up Machine Learning: Parallel and Distributed Approaches, Cambridge University Press, Cambridge.10.1145/2107736.2107740
  7. Ben-Haim, Y. and Tom-Tov, E. (2010). A streaming parallel decision tree algorithm, The Journal of Machine Learning Research 11: 849-872.
  8. Breiman, L. (1999). Pasting small votes for classification in large databases and on-line, Machine Learning 36(1-2): 85-103.10.1023/A:1007563306331
  9. Dai, W. and Ji, W. (2014). A MAPREDUCE implementation of c4.5 decision tree algorithm, International Journal of Database Theory and Application 7(1): 49-60.
  10. DeWitt, D.J., Naughton, J.F. and Schneider, D. (1991). Parallel sorting on a shared-nothing architecture using probabilistic splitting, Proceedings of the 1st International Conference on Parallel and Distributed Information Systems, Miami Beach, FL, USA, pp. 280-291.
  11. Domingos, P. and Hulten, G. (2000). Mining high-speed data streams, Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, MA, USA, pp. 71-80.
  12. Fan, W. and Bifet, A. (2013). Mining big data: Current status, and forecast to the future, ACM sIGKDD Explorations Newsletter 14(2): 1-5.10.1145/2481244.2481246
  13. Gehrke, J., Ganti, V., Ramakrishnan, R. and Loh, W.-Y. (1999). Boat-optimistic decision tree construction, in S. Davidson and C. Faloutsos (Eds.), ACM SIGMOD Record, Vol. 28, ACM, New York, NY, pp. 169-180.10.1145/304181.304197
  14. Goil, S. and Choudhary, A. (2001). Parsimony: An infrastructure for parallel multidimensional analysis and data mining, Journal of Parallel and Distributed Computing 61(3): 285-321.10.1006/jpdc.2000.1691
  15. Hansen, L.K. and Salamon, P. (1990). Neural network ensembles, IEEE Transactions on Pattern Analysis & Machine Intelligence 12(10): 993-1001.10.1109/34.58871
  16. Jin, R. and Agrawal, G. (2003). Communication and memory efficient parallel decision tree construction, Proceedings of the 3rd SIAM International Conference on Data Mining, San Francisco, CA, USA, pp. 119-129.
  17. Joshi, M.V., Karypis, G. and Kumar, V. (1998). SCALPARC: A new scalable and efficient parallel classification algorithm for mining large datasets, Parallel Processing Symposium, Los Alamitos, CA, USA, pp. 573-579.
  18. Kargupta, H. and Park, B.-H. (2004). A Fourier spectrum-based approach to represent decision trees for mining data streams in mobile environments, IEEE Transactions on Knowledge and Data Engineering 16(2): 216-229.10.1109/TKDE.2004.1269599
  19. Kourtellis, N., Morales, G.D.F., Bifet, A. and Murdopo, A. (2016). VHT: Vertical Hoeffding tree, arXiv preprint, 1607.08325.
  20. Louppe, G. and Geurts, P. (2012). Ensembles on random patches, in P.A. Flach et al. (Eds.), Machine Learning and Knowledge Discovery in Databases, Springer, Berlin/Heidelberg, pp. 346-361.10.1007/978-3-642-33460-3_28
  21. Mehta, M., Agrawal, R. and Rissanen, J. (1996). SLIQ: A fast scalable classifier for data mining, in P. Aspers et al. (Eds.), Advances in Database Technology, Springer, Berlin/Heidelberg, pp. 18-32.10.1007/BFb0014141
  22. Miglio, R. and Soffritti, G. (2004). The comparison between classification trees through proximity measures, Computational Statistics & Data Analysis 45(3): 577-593.10.1016/S0167-9473(03)00063-X
  23. Narlikar, G.J. (1998). A parallel, multithreaded decision tree builder, Technical report, DTIC Document, http://www.dtic.mil/docs/citations/ADA363531
  24. Ntoutsi, I., Kalousis, A. and Theodoridis, Y. (2008). A general framework for estimating similarity of datasets and decision trees: Exploring semantic similarity of decision trees, in C. Apte et al. (Eds.), SIAM Conference on Data Mining, SIAM, Philadelphia, PA, pp. 810-821.10.1137/1.9781611972788.73
  25. Panda, B., Herbach, J.S., Basu, S. and Bayardo, R.J. (2009). Planet: Massively parallel learning of tree ensembles with MapReduce, Proceedings of the VLDB Endowment 2(2): 1426-1437.10.14778/1687553.1687569
  26. Pawlik, M. and Augsten, N. (2011). RTED: A robust algorithm for the tree edit distance, Proceedings of the VLDB Endowment 5(4): 334-345.10.14778/2095686.2095692
  27. Shafer, J., Agrawal, R. and Mehta, M. (1996). Sprint: A scalable parallel classifier for data mining, International Conference on Very Large Data Bases, Mumbai (Bombay), India, pp. 544-555.
  28. Shannon, W.D. and Banks, D. (1999). Combining classification trees using MLE, Statistics in Medicine 18(6): 727-740.10.1002/(SICI)1097-0258(19990330)18:6<;727::AID-SIM61>3.0.CO;2-2
  29. Sollich, P. and Krogh, A. (1996). Learning with ensembles: How overfitting can be useful, in D.S. Touretzky et al. (Eds.)Advances in Neural Information Processing Systems 8, MIT Press, Cambridge, MA, pp. 190-196.
  30. Sreenivas, M.K., AlSabti, K. and Ranka, S. (2000). Parallel out-of-core decision tree classifiers, in H. Kargupta and P. Chan (Eds.), Advances in Distributed and Parallel Knowledge Discovery, Cambridge, MA, pp. 317-336.
  31. Srivastava, A., Han, E.-H., Kumar, V. and Singh, V. (1995). Parallel formulations of decision-tree classification algorithms, Data Mining and Knowledge Discovery 3(3): 237-261.10.1007/0-306-47011-X_2
  32. Triguero, I., Peralta, D., Bacardit, J., Garc´ıa, S. and Herrera, F. (2015). MRPR: A MAPREDUCE solution for prototype reduction in big data classification, Neurocomputing 150(A): 331-345.10.1016/j.neucom.2014.04.078
  33. Zhang, K. and Shasha, D. (1989). Simple fast algorithms for the editing distance between trees and related problems, SIAM Journal on Computing 18(6): 1245-1262.10.1137/0218082
  34. Zhang, X. and Jiang, S. (2012). A splitting criteria based on similarity in decision tree learning, Journal of Software 7(8): 1775-1782.10.4304/jsw.7.8.1775-1782
  35. Zhang, Y., Gao, Q., Gao, L. and Wang, C. (2012). IMAPREDUCE: A distributed computing framework for iterative computation, Journal of Grid Computing 10(1): 47-68.10.1007/s10723-012-9204-9
DOI: https://doi.org/10.1515/amcs-2017-0051 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 737 - 748
Submitted on: Nov 30, 2016
Accepted on: Aug 8, 2017
Published on: Jan 13, 2018
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Abraham Itzhak Weinberg, Mark Last, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.