Have a personal or library account? Click to login
On the predictive power of meta-features in OpenML Cover

References

  1. Bensusan, H. and Giraud-Carrier, C. (2000a). Casa batl´o is in passeig de gr´acia or how landmark performances can describe tasks, Proceedings of the ECML-00 Workshop on Meta-Learning: Building Automatic Advice Strategies for Model Selection and Method Combination, Barcelona, Spain, pp. 29-46.
  2. Bensusan, H. and Giraud-Carrier, C.G. (2000b). Discovering task neighbourhoods through landmark learning performances, Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery, Lyon, France, pp. 325-330.10.1007/3-540-45372-5_32
  3. Bensusan, H., Giraud-Carrier, C.G. and Kennedy, C.J. (2000). A higher-order approach to meta-learning, Proceedings of the International Conference on Inductive Logic Programming, London, UK.
  4. Bensusan, H. and Kalousis, A. (2001). Estimating the predictive accuracy of a classifier, in M. Bramer (Ed.), Principles of Data Mining. Undergraduate Topics in Computer Science, Springer, London, pp. 25-36.
  5. Bilalli, B., Abelló, A., Aluja-Banet, T. and Wrembel, R. (2016). Towards intelligent data analysis: The metadata challenge, Proceedings of the International Conference on Internet of Things and Big Data, Rome, Italy, pp. 331-338.
  6. Bilalli, B., Abelló, A., Aluja-Banet, T. and Wrembel, R. (2017). Intelligent assistance for data pre-processing, Computer Standards & Interfaces, DOI: 10.1016/j.csi.2017.05.004, (in press).10.1016/j.csi.2017.05.004()
  7. Brazdil, P., Gama, J.A. and Henery, B. (1994). Characterizing the applicability of classification algorithms using meta-level learning, Proceedings of the European Conference on Machine Learning, Catania, Italy, pp. 83-102.
  8. Brazdil, P., Giraud-Carrier, C., Soares, C. and Vilalta, R. (2008). Metalearning: Applications to Data Mining, 1st Edn., Springer Publishing Company, Berlin.
  9. Castiello, C., Castellano, G. and Fanelli, A.M. (2005). Meta-data: Characterization of input features for meta-learning, Proceedings of the International Conference on Modeling Decisions for Artificial Intelligence, Tsukuba, Japan, pp. 457-468.
  10. Fayyad, U.M., Piatetsky-Shapiro, G. and Smyth, P. (1996). From data mining to knowledge discovery in databases, AI Magazine 17(3): 1-34.
  11. Fürnkranz, J. and Petrak, J. (2001). An evaluation of landmarking variants, Proceedings of the ECML/PKDD Workshop on Integrating Aspects of Data Mining, Decision Support and Meta-Learning, Freiburg, Germany, pp. 57-68.
  12. Giraud-Carrier, C. (2005). The data mining advisor: Meta-learning at the service of practitioners, Proceedings of the International Conference on Machine Learning and Applications, Los Angeles, CA, USA, pp. 113-119.
  13. Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology 24(6): 417-441.10.1037/h0071325
  14. Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis, Psychometrika 23(3): 187-200. 10.1007/BF02289233
  15. Kalousis, A. and Hilario, M. (2001). Feature selection for meta-learning, Proceedings of the International Conference on Knowledge Discovery and Data Mining, Hong Kong, China, pp. 222-233.
  16. Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection, Proceedings of the International Joint Conference on Artificial Intelligence, Montr´eal, Qu´ebec, Canada, pp. 1137-1143.
  17. Lemke, C., Budka, M. and Gabrys, B. (2015). Metalearning: A survey of trends and technologies, Artificial Intelligence Review 44(1): 117-130.10.1007/s10462-013-9406-y445954326069389
  18. Michie, D., Spiegelhalter, D.J., Taylor, C.C. and Campbell, J. (Eds.) (1994). Machine Learning, Neural and Statistical Classification, Ellis Horwood, Chichester.
  19. Morchid, M., Dufour, R., Bousquet, P., Linarès, G. and Torres-Moreno, J. (2014). Feature selection using principal component analysis for massive retweet detection, Pattern Recognition Letters 49: 33-39.10.1016/j.patrec.2014.05.020
  20. Peng, Y., Flach, P.A., Soares, C. and Brazdil, P. (2002). Improved dataset characterisation for meta-learning, Proceedings of the 5th International Conference on Discovery Science, L¨ubeck, Germany, pp. 141-152.
  21. Pfahringer, B., Bensusan, H. and Giraud-Carrier, C.G. (2000). Meta-learning by landmarking various learning algorithms, Proceedings of the 17th International Conference on Machine Learning, San Francisco, CA, USA, pp. 743-750.
  22. Reif, M., Shafait, F. and Dengel, A. (2012). Meta2-features: Providing meta-learners more information, 35th German Conference on Artificial Intelligence, Staarbr¨ucken, Germany.
  23. Reif, M., Shafait, F., Goldstein, M., Breuel, T. and Dengel, A. (2014). Automatic classifier selection for non-experts, Pattern Analysis and Applications 17(1): 83-96.10.1007/s10044-012-0280-z
  24. Rendell, L., Seshu, R. and Tcheng, D. (1987). Layered concept-learning and dynamically-variable bias management, Proceedings of the International Joint Conference on Artificial Intelligence, Milan, Italy, pp. 308-314.
  25. Serban, F., Vanschoren, J., Kietz, J. and Bernstein, A. (2013). A survey of intelligent assistants for data analysis, ACM Computing Surveys 45(3): 31:1-31:35.10.1145/2480741.2480748
  26. Sohn, S.Y. (1999). Meta analysis of classification algorithms for pattern recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence 21(11): 1137-1144.10.1109/34.809107
  27. Todorovski, L., Brazdil, P. and Soares, C. (2000). Report on the experiments with feature selection in meta-level learning, Proceedings of the PKDD Workshop on Data Mining, Lyon, France, pp. 27-39.
  28. Todorovski, L. and Dzeroski, S. (1999). Experiments in meta-level learning with ILP, Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery, Prague, Czech Republic, pp. 98-106.
  29. Vanschoren, J., van Rijn, J.N., Bischl, B. and Torgo, L. (2014). OpenML: Networked science in machine learning, ACM SIGKDD Explorations Newsletter 15(2): 49-60.10.1145/2641190.2641198
DOI: https://doi.org/10.1515/amcs-2017-0048 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 697 - 712
Submitted on: Nov 29, 2016
Accepted on: Aug 8, 2017
Published on: Jan 13, 2018
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Besim Bilalli, Alberto Abelló, Tomàs Aluja-Banet, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.