Have a personal or library account? Click to login
Is an interval the right result of arithmetic operations on intervals? Cover

Is an interval the right result of arithmetic operations on intervals?

Open Access
|Sep 2017

References

  1. Bader, F. and Nipkow, T. (1998). Term Rewriting and All That, Cambridge University Press, Cambridge.10.1017/CBO9781139172752
  2. Birkhoff, G. (1967). Lattice Theory, Vol. XXV, Colloquium Publications, American Mathematical Society, Providence, RI.
  3. Chalco-Cano, Y., Lodwick, W. and Bede, B. (2014). Single level constraint interval arithmetic, Fuzzy Sets and Systems257: 146–168.10.1016/j.fss.2014.06.017
  4. Dabala, K. (2009). Research of possibilities of interval arithmetic application to induction motors efficiency determination, Zeszyty Problemowe: Maszyny Elektryczne (84): 39–44.
  5. Dymova, L. (2011). Soft Computing in Economics and Finance, Springer, Berlin/Heidelberg.10.1007/978-3-642-17719-4
  6. Figuiredo, L. and Stolfi, J. (2004). Affine arithmetic: Concepts and applications, Numerical Algorithms37(1): 147–158.10.1023/B:NUMA.0000049462.70970.b6
  7. Hanss, M. (2005). Applied Fuzzy Arithmetic, Springer, Berlin/Heidelberg.
  8. Hayes, B. (2003). A lucid interval, American Scientist91(6): 484–488.10.1511/2003.6.484
  9. Kaucher, E. (1980). Interval analysis in the extended interval space IR, Computing Supplement2: 33–49.10.1007/978-3-7091-8577-3_3
  10. Kovalerchuk, B. and Kreinovich, V. (2016). Comparisons of applied tasks with intervals, fuzzy sets and probability approaches, Proceedings of the 2016 IEEE International Conference on Fuzzy Systems (FUZZ), Vancouver, Canada, pp. 1478–1483.
  11. Leontief, W. (1949). The Structure of the American Economy, 1919–1935, Oxford University Press, London.
  12. Leontief, W. (1966). Input-Output Economics, Oxford University Press, New York, NY.
  13. Lodwick, W. (1999). Constrained interval arithmetic, Technical Report CCM, University of Colorado at Denver, Denver, CO.
  14. Lodwick, W. and Dubois, D. (2015). Interval linear systems as a necessary step in fuzzy linear systems, Fuzzy Sets and Systems281: 227–251.10.1016/j.fss.2015.03.018
  15. Lyashko, M. (2005). The optimal solution of an interval systems of linear algebraic equations, Reliable Computing11(2): 227–251.10.1007/s11155-005-3032-6
  16. Mazarhuiya, F., Mahanta, A. and Baruah, H. (2011). Solution of fuzzy equation a+x = b using method of superimposition, Applied Mathematics2(8): 1039–1045.10.4236/am.2011.28144
  17. Moore, R. (1996). Interval Analysis, Prentice Hall, Englewood Cliffs, NJ.
  18. Moore, R., Baker, K. and Cloud, M. (2009). Introduction to Interval Analysis, SIAM, Philadelphia, PA.10.1137/1.9780898717716
  19. Moore, R. and Young, C. (1959). Interval analysis I, Technical Report LMSD285875, Lockheed Missiles and Space Division, Sunnyvale, CA.
  20. Neumaier, A. (1990). Interval Methods for Systems of Equations, Cambridge University Press, Cambridge.10.1017/CBO9780511526473
  21. Pedrycz, W., Skowron, A. and Kreinovich, V. (2008). Handbook of Granular Computing, John Wiley&Sons, Chichester.10.1002/9780470724163
  22. Piegat, A. and Landowski, M. (2012). Is the conventional interval arithmetic correct?, Journal of Theoretical and Applied Computer Science6(2): 27–44.
  23. Piegat, A. and Landowski, M. (2013). Two interpretations of multidimensional RDM interval arithmetic—multiplication and division, International Journal of Fuzzy Systems15(4): 488–496.
  24. Piegat, A. and Pluciński, M. (2015). Computing with words with the use of inverse RDM models of membership functions, International Journal of Applied Mathematics and Computer Science25(3): 675–688, DOI: 10.1515/amcs-2015-0049.10.1515/amcs-2015-0049
  25. Piegat, A. and Plucinski, M. (2017). Fuzzy number division and the multi-granularity phenomenon, Bulletin of the Polish Academy of Sciences: Technical Sciences65(4): 497–511.10.1515/bpasts-2017-0055
  26. Piegat, A. and Tomaszewska, K. (2013). Decision making under uncertainty using info-gap theory and a new multidimensional RDM interval arithmetic, Przegląd Elektrotechniczny89(8): 71–76.
  27. Pilarek, M. (2010). Solving systems of linear equations using the interval extended zero method and multimedia extensions, Scientific Research of the Institute of Mathematics and Computer Science9(2): 203–212.
  28. Popova, E. (1998). Algebraic solutions to a class of interval equations, Journal of Universal Computer Science4(1): 48–67.
  29. Sevastjanov, P. and Dymova, L. (2009). A new method for solving internal and fuzzy equations: Linear case, Information Sciences179: 925–937.10.1016/j.ins.2008.11.031
  30. Shary, S. (1996). Algebraic approach to the interval linear static identification, tolerance and control problems, or one more application of Kaucher arithmetic, Reliable Computing2(1): 3–33.10.1007/BF02388185
  31. Shary, S. (2002). A new technique in systems analysis under interval uncertainty and ambiguity, Reliable Computing8: 321–418.10.1023/A:1020505620702
  32. Sunaga, T. (1958). Theory of an interval algebra and its application to numerical analysis, RAAG Memoirs2: 547–564.
  33. Warmus, M. (1956). Calculus of approximations, Bulletin de l’Académie Polonaise des Sciences Cl. III4(5): 253–259.
DOI: https://doi.org/10.1515/amcs-2017-0041 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 575 - 590
Submitted on: Jan 10, 2017
Accepted on: May 27, 2017
Published on: Sep 23, 2017
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Andrzej Piegat, Marek Landowski, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.