Have a personal or library account? Click to login
The interval Shapley value of an M/M/1 service system Cover
By: E Cheng-Guo,  Quan-Lin Li and  Shiyong Li  
Open Access
|Sep 2017

References

  1. Aksin, O., De Vericourt, F. and Karaesmen, F. (2008). Call center outsourcing contract design and choice, Management Science54(2): 354–368.10.1287/mnsc.1070.0823
  2. Alparslan-Gok, S., Branzei, O., Branzei, R. and Tijs, S. (2011). Set-valued solution concepts using interval-type payoffs for interval games, Journal of Mathematical Economics47(4): 621–626.10.1016/j.jmateco.2011.08.008
  3. Alparslan-Gok, S., Miquel, S. and Tijs, S. (2009). Cooperation under interval uncertainty, Mathematical Methods of Operations Research69(1): 99–109.10.1007/s00186-008-0211-3
  4. Alparslan-Gok, S., Palancı, O. and Olgun, M. (2014). Cooperative interval games: Mountain situations with interval data, Journal of Computational and Applied Mathematics259(6): 622–632.10.1016/j.cam.2013.01.021
  5. Anily, S. and Haviv, M. (2007). Cost-allocation problem for the first order interaction joint replenishment model, Operations Research55(2): 292–302.10.1287/opre.1060.0346
  6. Anily, S. and Haviv, M. (2010). Cooperation in service systems, Operations Research58(3): 660–673.10.1287/opre.1090.0737
  7. Benjaafar, S. (1995). Performance bounds for the effectiveness of pooling in multi-processing systems, European Journal of Operational Research87(2): 375–388.10.1016/0377-2217(94)00155-6
  8. Branzei, R., Branzei, O., Alparslan Gok, S. and Tijs, S. (2010). Cooperative interval games: A survey, Central European Journal of Operations Research18(3): 397–411.10.1007/s10100-009-0116-0
  9. Buzacott, J. (1996). Commonalities in reengineered business processes: Models and issues, Management Science42(5): 768–782.10.1287/mnsc.42.5.768
  10. Chun, Y. (1989). A new axiomatization of the Shapley value, Games and Economic Behavior1(2): 119–130.10.1016/0899-8256(89)90014-6
  11. Garcia-Sanz, M., Fernandez, F., Fiestras-Janeiro, M., Garcia-Jurado, I. and Puerto, J. (2008). Cooperation in Markovian queueing models, European Journal of Operational Research188(2): 485–495.10.1016/j.ejor.2007.04.053
  12. Gonzalez, P. and Herrero, C. (2004). Optimal sharing of surgical costs in the presence of queues, Mathematical Methods of Operations Research59(3): 435–446.10.1007/s001860400350
  13. Han, W., Sun, H. and Xu, G. (2012). A new approach of cooperative interval games: The interval core and Shapley value revisited, Operations Research Letters40(6): 462–468.10.1016/j.orl.2012.08.002
  14. Hart, S. and Mas-Colell, A. (1989). Potential, value and consistency, Econometrica57(3): 589–614.10.2307/1911054
  15. Hopp, W., Tekin, E. and Van Oyen, M. (2004). Benefits of skill chaining in serial production lines with cross-trained workers, Management Science50(1): 83–98.10.1287/mnsc.1030.0166
  16. Hwang, Y. and Yang, W. (2014). A note on potential approach under interval games, Top22(2): 571–577.10.1007/s11750-012-0271-7
  17. Karsten, F., Slikker, M. and Houtum, G. (2011). Analysis of resource pooling games via a new extension of the Erlang loss function, BETA working paper 344, Eindhoven University of Technology, Eindhoven.
  18. Li, S., Sun, W., E, C.-G. and Shi, L. (2016). A scheme of resource allocation and stability for peer-to-peer file-sharing networks, International Journal of Applied Mathematics and Computer Science26(3): 707–719, DOI: 10.1515/amcs-2016-0049.10.1515/amcs-2016-0049
  19. Mallozzi, L., Scalzo, V. and Tijs, S. (2011). Fuzzy interval cooperative games, Fuzzy Sets and Systems165(1): 98–105.10.1016/j.fss.2010.06.005
  20. Mandelbaum, A. and Reiman, M. (1998). On pooling in queueing networks, Management Science44(7): 971–981.10.1287/mnsc.44.7.971
  21. Maniquet, F. (2003). A characterization of the Shapley value in queueing problems, Journal of Economic Theory109(1): 90–103.10.1016/S0022-0531(02)00036-4
  22. Mariano, P. and Correia, L. (2015). The Give and Take game: Analysis of a resource sharing game, International Journal of Applied Mathematics and Computer Science25(4): 753–767, DOI: 10.1515/amcs-2015-0054.10.1515/amcs-2015-0054
  23. Moulin, H. and Strong, R. (2002). Fair queuing and other probabilistic allocation methods, Mathematics of Operations Research27(1): 1–30.10.1287/moor.27.1.1.336
  24. Nagarajan, M. and Sosic, G. (2008). Game-theoretic analysis of cooperation among supply chain agents: Review and extensions, European Journal of Operational Research187(3): 719–745.10.1016/j.ejor.2006.05.045
  25. Roth, A. (1977). The Shapley value as a von Neumann–Morgenstern utility, Econometrica45(3): 657–664.10.2307/1911680
  26. Shapley, L. (1953). A value for n-person games, Annals ofMathematics Studies28: 307–317.10.1515/9781400881970-018
  27. Stidham, S. (1970). On the optimality of single-server queuing systems, Operations Research18(4): 708–732.10.1287/opre.18.4.708
  28. Young, H. (1985). Monotonic solutions of cooperative games, International Journal of Game Theory14(2): 65–72.10.1007/BF01769885
DOI: https://doi.org/10.1515/amcs-2017-0039 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 549 - 562
Submitted on: Jun 7, 2016
Accepted on: May 2, 2017
Published on: Sep 23, 2017
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 E Cheng-Guo, Quan-Lin Li, Shiyong Li, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.