Have a personal or library account? Click to login
Feedback linearization of an active magnetic bearing system operated with a zero–bias flux Cover

Feedback linearization of an active magnetic bearing system operated with a zero–bias flux

Open Access
|Sep 2017

References

  1. Baloh, M., Tao, G. and Allaire, P. (2000). Modeling and control of a magnetic bearing actuated beam, American Control Conference, Chicago, IL, USA, pp. 1602–1606.
  2. Charara, A., De Miras, J. and Caron, B. (1996). Nonlinear control of a magnetic levitation system without premagnetization, IEEE Transactions on Control Systems Technology4(5): 513–523.10.1109/87.531918
  3. Chen, M. and Knospe, C.R. (2005). Feedback linearization of active magnetic bearings: Current-mode implementation, IEEE/ASME Transactions on Mechatronics10(6): 632–639.10.1109/TMECH.2005.859824
  4. Conte, G., Moog, C.H. and Perdon, A.M. (2007). Algebraic Methods for Nonlinear Control Systems. Theory and Applications, 2nd Edn., Springer, London.10.1007/978-1-84628-595-0
  5. Ghosh, J., Mukherjee, D., Baloh, M. and Paden, B. (2000). Nonlinear control of a benchmark beam balance experiment using variable hyperbolic bias, American Control Conference, Chicago, IL, USA, pp. 2149–2153.
  6. Isidori, A. (1995). Nonlinear Control Systems, 3rd Edn., Springer, London.
  7. Jastrzebski, R.P., Smirnov, A., Mystkowski, A. and Pyrhönen, O. (2014). Cascaded position-flux controller for an AMB system operating at zero bias, Energies7(6): 3561–3575.10.3390/en7063561
  8. Joo, S.J. and Seo, J.H. (1997). Design and analysis of the nonlinear feedback linearizing control for an electromagnetic suspension system, IEEE Transactions on Control Systems Technology5(1): 135–144.10.1109/87.553672
  9. Ławryńczuk, M. (2015). Nonlinear state-space predictive control with on-line linearisation and state estimation, International Journal of Applied Mathematics and Computer Science25(4): 833–847, DOI: 10.1515/amcs-2015-0060.10.1515/amcs-2015-0060
  10. Lévine, J. (2009). Analysis and Control of Nonlinear Systems: A Flatness-Based Approach, Springer, Berlin/Heidelberg.10.1007/978-3-642-00839-9
  11. Lévine, J., Lottin, J. and Ponsart, J.-C. (1996). A nonlinear approach to the control of magnetic bearings, IEEE Transactions on Control Systems Technology4(5): 524–544.10.1109/87.531919
  12. Lindlau, J.D. and Knospe, C.R. (2002). Feedback linearization of an active magnetic bearing with voltage control, IEEE Transactions on Control Systems Technology10(1): 21–31.10.1109/87.974335
  13. Maslen, E.H. (2013). Self-sensing magnetic bearings, in G. Schweitzer and E.H.Maslen (Eds.), Magnetic Bearings: Theory, Design, and Application to Rotating Machinery, Springer, Berlin/Heidelberg, Chapter 15, pp. 435–459.
  14. Matsumura, F., Namerikawa, T. and Murata, N. (1999). Wide area stabilization of a magnetic bearing using exact linearization, Electrical Engineering in Japan128(2): 53–62.10.1002/(SICI)1520-6416(19990730)128:2<;53::AID-EEJ7>3.0.CO;2-9
  15. Mittal, S. and Menq, C.-H. (1997). Precision motion control of a magnetic suspension actuator using a robust nonlinear compensation scheme, IEEE/ASME Transactions on Mechatronics2(4): 268–280.10.1109/3516.653051
  16. Mystkowski, A., Pawluszewicz, E. and Dragašius, E. (2015a). Robust nonlinear position-flux zero-bias control for uncertain AMB system, International Journal of Control88(8): 1619–1629.10.1080/00207179.2015.1012118
  17. Mystkowski, A., Pawluszewicz, E. and Jastrzebski, R.P. (2015b). Nonlinear position-flux zero-bias control for AMB system, 20th International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 471–476.10.1109/MMAR.2015.7283921
  18. Naz, N., Malik, M.B. and Salman, M. (2013). Real time implementation of feedback linearizing controllers for magnetic levitation system, IEEE Conference on Systems, Process and Control, Kuala Lumpur, Malaysia, pp. 52–56.
  19. Nijmeijer, H. and van der Schaft, A.J. (1990). Nonlinear Dynamical Control Systems, Springer, New York, NY.10.1007/978-1-4757-2101-0
  20. Sira-Ramírez, H. and Agrawal, S.K. (2004). Differentially Flat Systems, Automation and Control Engineering, Marcel Dekker, Inc., New York, NY.
DOI: https://doi.org/10.1515/amcs-2017-0038 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 539 - 548
Submitted on: Nov 23, 2016
Accepted on: May 31, 2017
Published on: Sep 23, 2017
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Arkadiusz Mystkowski, Vadim Kaparin, Ülle Kotta, Ewa Pawluszewicz, Maris Tõnso, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.