Have a personal or library account? Click to login
Conservative finite volume element schemes for the complex modified Korteweg–de Vries equation Cover

Conservative finite volume element schemes for the complex modified Korteweg–de Vries equation

Open Access
|Sep 2017

References

  1. Bank, R.E. and Rose, D.J. (1987). Some error estimates for the box methods, SIAM Journal on Numerical Analysis24(4): 777–787.10.1137/0724050
  2. Cai, J.X. and Miao, J. (2012). New explicit multisymplectic scheme for the complex modified Korteweg–de Vries equation, Chinese Physics Letters29(3): 030201.10.1088/0256-307X/29/3/030201
  3. Cai, Z.Q. (1991). On the finite volume element method, Numerische Mathematik58(7): 713–735.10.1007/BF01385651
  4. Costa, R., Machado, G.J. and Clain, S. (2015). A sixth-order finite volume method for the 1D biharmonic operator: Application to intramedullary nail simulation, International Journal of Applied Mathematics and Computer Science25(3): 529–537, DOI: 10.1515/amcs-2015-0039.10.1515/amcs-2015-0039
  5. Erbay, H.A. (1998). Nonlinear transverse waves in a generalized elastic solid and the complex modified Korteweg–de Vries equation, Physica Scripta58(1): 9–14.10.1088/0031-8949/58/1/001
  6. Erbay, S. and Suhubi, E.S. (1989). Nonlinear wave propagation in micropolar media. II: Special cases, solitary waves and Painlevé analysis, International Journal of Engineering Science27(8): 915–919.
  7. Ewing, R., Lin, T. and Lin, Y. (2000). On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM Journal on Numerical Analysis39(6): 1865–1888.10.1137/S0036142900368873
  8. Furihata, D. and Matsuo, T. (2010). Discrete Variational Derivative Method: A Structure-Preserving Numerical Method For Partial Differential Equations, CRC Press, London.10.1201/b10387
  9. Furihata, D. and Mori, M. (1996). A stable finite difference scheme for the Cahn–Hilliard equation based on the Lyapunov functional, Zeitschrift fur Angewandte Mathematik und Mechanik76(1): 405–406.
  10. Gorbacheva, O.B. and Ostrovsky, L.A. (1983). Nonlinear vector waves in a mechanical model of a molecular chain, Physica D8(1–2): 223–228.10.1016/0167-2789(83)90319-6
  11. Hackbusch, W. (1989). On first and second order box schemes, Computing41(4): 277–296.10.1007/BF02241218
  12. Ismail, M.S. (2008). Numerical solution of complex modified Korteweg–de Vries equation by Petrov–Galerkin method, Applied Mathematics and Computation202(2): 520–531.10.1016/j.amc.2008.02.033
  13. Ismail, M.S. (2009). Numerical solution of complex modified Korteweg–de Vries equation by collocation method, Communications in Nonlinear Science and Numerical Simulation14(3): 749–759.10.1016/j.cnsns.2007.12.005
  14. Karney, C.F.F., Sen, A. and Chu, F.Y.F. (1979). Nonlinear evolution of lower hybrid waves, Physics of Fluids22(5): 940–952.10.1063/1.862688
  15. Koide, S. and Furihata, D. (2009). Nonlinear and linear conservative finite difference schemes for regularized long wave equation, Japan Journal of Industrial and Applied Mathematics26(1): 15–40.10.1007/BF03167544
  16. Korkmaz, A. and Dağ, I. (2009). Solitary wave simulations of complex modified Korteweg–de Vries equation using differential quadrature method, Computer Physics Communications180(9): 1516–1523.10.1016/j.cpc.2009.04.012
  17. Li, R.H., Chen, Z.Y. and Wu, W. (2000). Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods, Marcel Dekker Inc., New York, NY.
  18. Matsuo, T. and Furihata, D. (2001). Dissipative or conservative finite difference schemes for complex-valued nonlinear partial differential equations, Journal of Computational Physics171(2): 425–447.10.1006/jcph.2001.6775
  19. Matsuo, T. and Kuramae, H. (2012). An alternating discrete variational derivative method, AIP Conference Proceedings1479: 1260–1263.10.1063/1.4756383
  20. Miyatake, Y. and Matsuo, T. (2014). A general framework for finding energy dissipative/conservative H1-Galerkin schemes and their underlying H1-weak forms for nonlinear evolution equations, BIT Numerical Mathematics54(4): 1119–1154.10.1007/s10543-014-0483-3
  21. Muslu, G.M. and Erabay, H.A. (2003). A split-step Fourier method for the complex modified Korteweg–de Vries equation, Computers & Mathematics with Applications45(1): 503–514.10.1016/S0898-1221(03)80033-0
  22. Uddin, M., Haq, S. and Islam, S.U. (2009). Numerical solution of complex modified Korteweg–de Vries equation by mesh-free collocation method, Computers & Mathematics with Applications58(3): 566–578.10.1016/j.camwa.2009.03.104
  23. Wang, Q.X., Zhang, Z.Y., Zhang, X.H. and Zhu, Q.Y. (2014). Energy-preserving finite volume element method for the improved Boussinesq equation, Journal of Computational Physics270: 58–69.10.1016/j.jcp.2014.03.053
  24. Yaguchi, T., Matsuo, T. and Sugihara, M. (2010). An extension of the discrete variational method to nonuniform grids, Journal of Computational Physics229(11): 4382–4423.10.1016/j.jcp.2010.02.018
  25. Yan, J.L., Zhang, Q., Zhu, L. and Zhang, Z.Y. (2016). Two-grid methods for finite volume element approximations of nonlinear Sobolev equations, Numerical Functional Analysis and Optimization37(3): 391–414.10.1080/01630563.2015.1115415
  26. Zhang, Z.Y. and Lu, F.Q. (2012). Quadratic finite volume element method for the improved Boussinesq equation, Journal of Mathematical Physics53(1): 013505.10.1063/1.3672197
DOI: https://doi.org/10.1515/amcs-2017-0036 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 515 - 525
Submitted on: Oct 22, 2016
Accepted on: Apr 10, 2017
Published on: Sep 23, 2017
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Jin-Liang Yan, Liang-Hong Zheng, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.