Have a personal or library account? Click to login
Exact null controllability, complete stabilizability and continuous final observability of neutral type systems Cover

Exact null controllability, complete stabilizability and continuous final observability of neutral type systems

Open Access
|Sep 2017

References

  1. Curtain, R.F., Logemann, H., Townley, S. and Zwart, H. (1997). Well-posedness, stabilizability, and admissibility for Pritchard–Salamon systems, Journal of Mathematical Systems, Estimation, and Control4(4): 493–496.
  2. Curtain, R.F. and Zwart, H. (1995). An Introduction to Infinitedimensional Linear Systems Theory, Texts in Applied Mathematics, Vol. 21, Springer-Verlag, New York, NY.
  3. Douglas, R.G. (1966). On majorization, factorization, and range inclusion of operators on Hilbert space, Proceedings of the American Mathematical Society17: 413–415.10.1090/S0002-9939-1966-0203464-1
  4. Dusser, X. and Rabah, R. (2001). On exponential stabilizability of linear neutral systems, Mathematical Problems in Engineering7(1): 67–86.10.1155/S1024123X01001533
  5. Guo, F., Zhang, Q. and Huang, F. (2003). Well-posedness and admissible stabilizability for Pritchard–Salamon systems, Applied Mathematical Letters16(1): 65–70.10.1016/S0893-9659(02)00145-3
  6. Hale, J.K. and Verduyn Lunel, S.M. (1993). Introduction to Functional-Differential Equations, Applied Mathematical Sciences, Vol. 99, Springer-Verlag, New York, NY.
  7. Hale, J.K. and Verduyn Lunel, S.M. (2002). Strong stabilization of neutral functional differential equations, IMA Journal of Mathematical Control and Information19(1–2): 5–23.10.1093/imamci/19.1_and_2.5
  8. Ito, K. and Tarn, T.J. (1985). A linear quadratic optimal control for neutral systems, Nonlinear Analysis9(7): 699–727.10.1016/0362-546X(85)90013-6
  9. Khartovskiĭ, V.E. and Pavlovskaya, A.T. (2013) Complete controllability and controllability for linear autonomous systems of neutral type, Automation and Remote Control79(5): 769–784.10.1134/S0005117913050032
  10. Kuperman, L.M. and Repin, Ju. M. (1971) On the question of controllability in infinite-dimensional spaces, Doklady Akademii Nauk SSSR200(3): 767–769, (in Russian). English translation: Soviet Mathematics—Doklady12(5): 1469–1472.
  11. Logemann, H. and Pandolfi, L. (1994) A note on stability and stabilizability of neutral systems, IEEE Transactions on Automatic Control39(1): 138–143.10.1109/9.273351
  12. Louis, J.-C. and Wexler, D. (1983). On exact controllability in Hilbert spaces, Journal of Differential Equations49(2): 258–269.10.1016/0022-0396(83)90014-1
  13. Marčenko, V.M. (1979). On the controllability of zero function of time lag systems, Problems of Control and Information Theory/Problemy Upravlenia i Teoria Informacii8(5–6): 421–432.
  14. Megan, M. (1975). On the stabilizability and controllability of linear dissipative systems in Hilbert space, Seminarul de Ecuatii Functional, Universitatea din Timisoara32: 1–15.
  15. Metel'skiĭ, A.V. and Khartovskii, S.A. (2016). Criteria for modal controllability of linear systems of neutral type, Differential Equations52(11): 1453–1468.10.1134/S0012266116110070
  16. Metel'skiĭ, A.V. and Minyuk, S.A. (2006). A criterion of constructive identifiability and complete controllability of linear time-independent systems of neutral type, Izvestiya Rossiiskoi Akademii Nauk: Teoriya i Sistemy Upravleniya (5): 15–23, (in Russian). English translation: Journal of Computer and Systems Sciences International45(5): 690–698.
  17. Michiels, W. and Niculescu, S.-I. (2007). Stability and Stabilization of Time-Delay Systems. An Eigenvalue-Based Approach, Advances in Design and Control, Vol. 12, SIAM, Philadelphia, PA.10.1137/1.9780898718645
  18. O’Connor, D.A. and Tarn, T.J. (1983). On stabilization by state feedback for neutral differential equations, IEEE Transactions on Automatic Control28(5): 615–618.10.1109/TAC.1983.1103286
  19. Olbrot, A.W. and Pandolfi, L. (1988). Null controllability of a class of functional-differential systems, International Journal on Control47(1): 193–208.10.1080/00207178808906006
  20. Pandolfi, L. (1976). Stabilization of neutral functional differential equations, Journal of Optimization Theory and Applications20(2): 191–204.10.1007/BF01767451
  21. Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, NY.10.1007/978-1-4612-5561-1_7
  22. Pritchard, A.J. and Salamon, D. (1987). The linear quadratic control problem for infinite dimensional systems with unbounded input and output operators, SIAM Journal on Control and Optimization25(1): 121–144.10.1137/0325009
  23. Rabah, R. and Karrakchou, J. (1997). On exact controllability and complete stabilizability for linear systems in Hilbert spaces, Applied Mathematics Letters10(1): pp. 35–40.10.1016/S0893-9659(96)00107-3
  24. Rabah, R. and Sklyar, G.M. (2007). The analysis of exact controllability of neutral-type systems by the moment problem approach, SIAM Journal on Control and Optimization46(6): 2148–2181.10.1137/060650246
  25. Rabah, R. and Sklyar, G.M. (2016). Exact observability and controllability for linear neutral type systems, Systems and Control Letters89: 8–15.10.1016/j.sysconle.2015.12.010
  26. Rabah, R., Sklyar, G.M. and Barkhayev, P.Y. (2012). Stability and stabilizability of mixed retarded-neutral type systems, ESAIM Control, Optimization and Calculus of Variations18(3): 656–692.10.1051/cocv/2011166
  27. Rabah, R., Sklyar, G.M. and Barkhayev, P.Y. (2014). On the exact controllability and observability of neutral type systems, Communications on Mathematical Analysis17(2): 279–294.
  28. Rabah, R., Sklyar, G.M. and Barkhayev, P.Y. (2016). On exact controllability of neutral time-delay systems, Ukrainian Mathematical Journal68(6): 800–815.10.1007/s11253-016-1265-7
  29. Rabah, R., Sklyar, G.M. and Rezounenko, A.V. (2005). Stability analysis of neutral type systems in Hilbert space, Journal of Differential Equations214(2): 391–428.10.1016/j.jde.2004.08.001
  30. Rabah, R., Sklyar, G.M. and Rezounenko, A.V. (2008). On strong regular stabilizability for linear neutral type systems, Journal of Differential Equations245(3): 569–593.10.1016/j.jde.2008.02.041
  31. Rhandi, A. (2002). Spectral Theory for Positive Semigroups and Applications, Quaderni di Matematica, Vol. 2, ESE—Salento University Publishing, Lecce.
  32. Richard, J.-P. (2003). Time-delay systems: An overview of some recent advances and open problems, Automatica39(10): 1667–1694.10.1016/S0005-1098(03)00167-5
  33. Salamon, D. (1983). Neutral functional differential equations and semigroups of operators, in F. Kappel et al. (Eds.), Control Theory for Distributed Parameter Systems and Applications, Lecture Notes in Control and Information Sciences, Vol. 54, Springer, Berlin, pp. 188–207.10.1007/BFb0043949
  34. Salamon, D. (1984). Control and Observation of Neutral Systems, Research Notes in Mathematics, Vol. 91, Pitman (Advanced Publishing Program), Boston, MA.
  35. Salamon, D. (1987). Infinite dimensional linear systems with unbounded control and observation: A functional analytical approach, Transactions of American Mathematical Society300(2): 383–431.10.2307/2000351
  36. Sklyar, G.M. and Szkibiel, G. (2013). Controlling a nonhomogeneous Timoshenko beam with the aid of the torque, International Journal of Applied Mathematics and Computer Science23(3): 587–598, DOI: 10.2478/amcs-2013-0044.10.2478/amcs-2013-0044
  37. Tucsnak, M. and Weiss, G. (2009). Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts, Basel/Birkhäuser, Boston, MA.10.1007/978-3-7643-8994-9
  38. Wonham, W.M. (1985). Linear Multivariable Control: A Geometric Approach, 3rd Edn., Springer, New York, NY.
  39. Zabczyk, J. (1976). Complete stabilizability implies exact controllability, Seminarul de Ecuatii Functional, Universitatea din Timisoara38: 1–7.
  40. Zabczyk, J. (1992). Mathematical Control Theory: An Introduction, Systems & Control: Foundations & Applications, Birkhäuser, Boston, MA.
  41. Zeng, Y., Xie, Z. and Guo, F. (2013). On exact controllability and complete stabilizability for linear systems, Applied Mathematical Letters26(7): 766–768.10.1016/j.aml.2013.02.008
DOI: https://doi.org/10.1515/amcs-2017-0034 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 489 - 499
Submitted on: Nov 16, 2016
Accepted on: Jun 7, 2017
Published on: Sep 23, 2017
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Rabah Rabah, Grigory Sklyar, Pavel Barkhayev, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.