Have a personal or library account? Click to login
A numerical solution for a class of time fractional diffusion equations with delay Cover

A numerical solution for a class of time fractional diffusion equations with delay

Open Access
|Sep 2017

References

  1. Alikhanov, A.A. (2015). A new difference scheme for the time fractional diffusion equation, Journal of Computational Physics280: 424–438.10.1016/j.jcp.2014.09.031
  2. Bagley, R.L. and Torvik, P.J. (1983). A theoretical basis for the application of fractional calculus to viscoelasticity, Journal of Rheology27(201): 201–210.10.1122/1.549724
  3. Balachandran, K. and Kokila, J. (2012). On the controllability of fractional dynamical systems, International Journal of Applied Mathematics and Computer Science22(3): 523–531, DOI: 10.2478/v10006-012-0039-0.10.2478/v10006-012-0039-0
  4. Batzel, J.J. and Kappel, F. (2011). Time delay in physiological systems: Analyzing and modeling its impact, Mathematical Biosciences234(2): 61–74.10.1016/j.mbs.2011.08.00621945380
  5. Bellen, A. and Zennaro, M. (2003). Numerical Methods for Delay Differential Equations, Oxford University Press, Oxford.10.1093/acprof:oso/9780198506546.001.0001
  6. Benson, D., Schumer, R., Meerschaert, M.M. and Wheatcraft, S.W. (2001). Fractional dispersion, Levy motion, and the made tracer tests, Transport in Porous Media42(1–2): 211–240.10.1023/A:1006733002131
  7. Chen, F. and Zhou, Y. (2011). Attractivity of fractional functional differential equations, Computers and Mathematics with Applications62(3): 1359–1369.10.1016/j.camwa.2011.03.062
  8. Culshaw, R. V., Ruan, S. and Webb, G. (2003). A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, Mathematical Biology46: 425–444.10.1007/s00285-002-0191-512750834
  9. Ferreira, J.A. (2008). Energy estimates for delay diffusion-reaction equations, Computational and Applied Mathematics26(4): 536–553.
  10. Hao, Z., Fan, K., Cao, W. and Sun, Z. (2016). A finite difference scheme for semilinear space-fractional diffusion equations with time delay, Applied Mathematics and Computation275: 238–254.10.1016/j.amc.2015.11.071
  11. Hatano, Y. and Hatano, N. (1998). Dispersive transport of ions in column experiments: An explanation of long-tailed profiles, Water Resources Research34(5): 1027–1033.10.1029/98WR00214
  12. Höfling, F. and Franosch, T. (2013). Anomalous transport in the crowded world of biological cells, Reports on Progress in Physics76(4): 46602.10.1088/0034-4885/76/4/04660223481518
  13. Holte, J.M. (2009). Discrete Gronwall lemma and applications, MAA North Central SectionMeeting at UND, Grand Forks, ND, USA, p. 8, http://homepages.gac.edu/~holte/publications/GronwallLemma.pdf.
  14. Jackiewicz, Z., Liu, H., Li, B. and Kuang, Y. (2014). Numerical simulations of traveling wave solutions in a drift paradox inspired diffusive delay population model, Mathematics and Computers in Simulation96: 95–103.10.1016/j.matcom.2012.06.004
  15. Karatay, I., Kale, N. and Bayramoglu, S.R. (2013). A new difference scheme for time fractional heat equations based on Crank–Nicholson method, Fractional Calculus and Applied Analysis16(4): 893–910.10.2478/s13540-013-0055-2
  16. Kruse, R. and Scheutzow, M. (2016). A discrete stochastic Gronwall lemma, Mathematics and Computers in Simulation, DOI: 10.1016/j.matcom.2016.07.002.10.1016/j.matcom.2016.07.002
  17. Lakshmikantham, V. (2008). Theory of fractional functional differential equations, Nonlinear Analysis: Theory, Methods and Applications69(10): 3337–3343.10.1016/j.na.2007.09.025
  18. Lekomtsev, A. and Pimenov, V. (2015). Convergence of the scheme with weights for the numerical solution of a heat conduction equation with delay for the case of variable coefficient of heat conductivity, Applied Mathematics and Computation256: 83–93.10.1016/j.amc.2014.12.149
  19. Liu, P.-P. (2015). Periodic solutions in an epidemic model with diffusion and delay, Applied Mathematics and Computation265: 275–291.10.1016/j.amc.2015.05.028
  20. Meerschaert, M.M. and Tadjeran, C. (2004). Finite difference approximations for fractional advection-dispersion flow equations, Computational and Applied Mathematics172(1): 65–77.10.1016/j.cam.2004.01.033
  21. Miller, K.S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Miller, New York, NY.
  22. Pimenov, V.G. and Hendy, A.S. (2015). Numerical studies for fractional functional differential equations with delay based on BDF-type shifted Chebyshev polynomials, Abstract and Applied Analysis, 2015(2015), Article ID 510875, DOI: 10.1155/2015/510875.10.1155/2015/510875
  23. Pimenov, V.G., Hendy, A.S. and De Staelen, R.H. (2017). On a class of non-linear delay distributed order fractional diffusion equations, Journal of Computational and Applied Mathematics318: 433–443.10.1016/j.cam.2016.02.039
  24. Raberto, M., Scalas, E. and Mainardi, F. (2002). Waiting-times returns in high frequency financial data: An empirical study, Physica A314(1–4): 749–755.10.1016/S0378-4371(02)01048-8
  25. Ren, J. and Sun, Z.Z. (2015). Maximum norm error analysis of difference schemes for fractional diffusion equations, Applied Mathematics and Computation256: 299–314.10.1016/j.amc.2014.12.151
  26. Rihan, F.A. (2009). Computational methods for delay parabolic and time-fractional partial differential equations, Numerical Methods for Partial Differential Equations26(6): 1557–1571.10.1002/num.20504
  27. Samarskii, A.A. and Andreev, V.B. (1976). Finite Difference Methods for Elliptic Equations, Nauka, Moscow, (in Russian).
  28. Scalas, E., Gorenflo, R. and Mainardi, F. (2000). Fractional calculus and continuous-time finance, Physica A284(1–4): 376–384.10.1016/S0378-4371(00)00255-7
  29. Schneider, W. and Wyss, W. (1989). Fractional diffusion and wave equations, Journal of Mathematical Physics30(134): 134–144.10.1063/1.528578
  30. Sikora, B. (2016). Controllability criteria for time-delay fractional systems with a retarded state, International Journal of Applied Mathematics and Computer Science26(3): 521–531, DOI: 10.1515/amcs-2016-0036.10.1515/amcs-2016-0036
  31. Solodushkin, S.I., Yumanova, I.F. and De Staelen, R.H. (2017). A difference scheme for multidimensional transfer equations with time delay, Journal of Computational and Applied Mathematics318: 580–590.10.1016/j.cam.2015.12.011
  32. Tumwiine, J., Luckhaus, S., Mugisha, J.Y.T. and Luboobi, L.S. (2008). An age-structured mathematical model for the within host dynamics of malaria and the immune system, Journal of Mathematical Modelling and Algorithms7: 79–97.10.1007/s10852-007-9075-4
  33. Wyss, W. (1986). The fractional diffusion equation, Journal of Mathematical Physics27: 2782–2785.10.1063/1.527251
  34. Yan, Y. and Kou, C. (2012). Stability analysis of a fractional differential model of HIV infection of CD4+ T-cells with time delay, Mathematics and Computers in Simulation82(9): 1572–1585.10.1016/j.matcom.2012.01.004
  35. Zhang, Z.B. and Sun, Z.Z. (2013). A linearized compact difference scheme for a class of nonlinear delay partial differential equations, Applied Mathematical Modelling37(3): 742–752.10.1016/j.apm.2012.02.036
DOI: https://doi.org/10.1515/amcs-2017-0033 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 477 - 488
Submitted on: Nov 29, 2016
Accepted on: May 4, 2017
Published on: Sep 23, 2017
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Vladimir G. Pimenov, Ahmed S. Hendy, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.