Have a personal or library account? Click to login
Element Partition Trees For H-Refined Meshes to Optimize Direct Solver Performance. Part I: Dynamic Programming Cover

Element Partition Trees For H-Refined Meshes to Optimize Direct Solver Performance. Part I: Dynamic Programming

Open Access
|Jul 2017

References

  1. AbouEisha, H., Calo, V.M., Jopek, K.,Moshkov, M., Paszyńska, A., Paszyński, M. and Skotniczny, M. (2016). Element partition trees for two- and three-dimensional h-refined meshes and their use to optimize direct solver performance. Part II: Heuristic algorithms, Journal of Computational and Applied Mathematics, (submitted).
  2. AbouEisha, H., Gurgul, P., Paszyńska, A., Paszyński, M., Ku´znik, K. and Moshkov, M. (2015). An automatic way of finding robust elimination trees for a multi-frontal sparse solver for radical 2D hierarchical meshes, in R. Wyrzykowski et al. (Eds.), Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, Vol. 8385, Springer, Berlin/Heidelberg, pp. 531-540.
  3. AbouEisha, H., Moshkov, M. Calo, V.M., Paszyński, M., Goik, D. and Jopek, K. (2014). Dynamic programming algorithm for generation of optimal elimination trees for multi-frontal direct solver over h-refined grids, Procedia Computer Science 29: 947-959.10.1016/j.procs.2014.05.085
  4. Amestoy, P.R., Davis, T.A. and Du, I.S. (1996). An approximate minimum degree ordering algorithm, SIAM Journal of Matrix Analysis & Application 17(4): 886-905.10.1137/S0895479894278952
  5. Amestoy, P.R., Duff, I.S. and L’Excellent, J.-Y. (2000). Multifrontal parallel distributed symmetric and unsymmetric solvers, Computer Methods in Applied Mechanics and Engineering 184(2): 501-520.10.1016/S0045-7825(99)00242-X
  6. Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y. and Koster, J. (2001). A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Applications 23(1): 15-41.10.1137/S0895479899358194
  7. Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y. and Pralet, S. (2006). Hybrid scheduling for the parallel solution of linear systems, Parallel Computing 32(2): 136-156.10.1016/j.parco.2005.07.004
  8. Babuška, I. and Rheinboldt, W.C. (1978). Error estimates for adaptive finite element computations, SIAM Journal of Numerical Analysis 15(4): 736-754.10.1137/0715049
  9. Bao, G., Hu, G. and Liu, D. (2012). An h-adaptive finite element solver for the calculations of the electronic structures, Journal of Computational Physics 231(14): 4967-4979.10.1016/j.jcp.2012.04.002
  10. Barboteu, M., Bartosz, B. and Kalita, P. (2013). An analytical and numerical approach to a bilateral contact problem with nonmonotone friction, International Journal of Applied Mathematics and Computer Science 23(2): 263-276, DOI: 10.2478/amcs-2013-0020.10.2478/amcs-2013-0020
  11. Becker, R., Kapp, H. and Rannacher, R. (2000). Adaptive finite element methods for optimal control of partial differential equations: Basic concept, SIAM Journal on Control and Optimisation 39(1): 113-132.10.1137/S0363012999351097
  12. Belytschko, T. and Tabbar, M. (1993). H-adaptive finite element methods for dynamic problems, with emphasis on localization, International Journal for Numerical Methods in Engineering 36(24): 4245-4265.10.1002/nme.1620362409
  13. Demkowicz, L. (2006). Computing with hp-Adaptive Finite Elements, Vol. I: One and Two Dimensional Elliptic and Maxwell Problems, Chapman and Hall/CRC, Boca Raton, FL .10.1201/9781420011685
  14. Duff, I.S., Erisman, A.M. and Reid, J.K. (1986). Direct Methods for Sparse Matrices, Oxford University Press, Oxford.
  15. Duff, I.S. and Reid, J.K. (1983). The multifrontal solution of indefinite sparse symmetric linear, ACM Transactions on Mathematical Software 9(3): 302-325.10.1145/356044.356047
  16. Duff, I.S. and Reid, J.K. (1984). The multifrontal solution of unsymmetric sets of linear equations, SIAMJournal on Scientific and Statistical Computing 5(3): 633-641.10.1137/0905045
  17. Errikson, K. and Johnson, C. (1991). Adaptive finite element methods for parabolic problems. I: A linear model problem, SIAM Journal on Numerical Analysis 28(1): 43-77.
  18. Fiałko, S. (2009a). A block sparse shared-memory multifrontal finite element solver for problems of structural mechanics, Computer Assisted Mechanics and Engineering Science 16: 117-131.
  19. Fiałko, S. (2009b). The block subtracture multifrontal method for solution of large finite element equation sets, Technical Transactions 8: 175-188.
  20. Fiałko, S. (2010). PARFES: A method for solving finite element linear equations on multi-core computers, Advanced Engineering Software 40(12): 1256-1265.10.1016/j.advengsoft.2010.09.002
  21. Hughues, T. (2000). The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover, New York, NY.
  22. Karczewska, A., Rozmej, P., Szczeciński, M. and Boguniewicz, B. (2016). A finite element method for extended KdV equations, International Journal of Applied Mathematics and Computer Science 26(3): 555-567, DOI: 10.1515/amcs-2016-0039.10.1515/amcs-2016-0039
  23. Kardani, M., Nazem, M., Abbo, A.J., Sheng, D. and Sloan, S.W. (2012). Refined h-adaptive finite element procedure for large deformation geotechnical problems, Computational Mechanics 49(1): 21-33.10.1007/s00466-011-0624-3
  24. Karypis, G. and Kumar, V. (1999). A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM Journal on Scientific Computing 20(1): 359-392.10.1137/S1064827595287997
  25. Liu, J. (1990). The role of elimination trees in sparse factorization, SIAM Journal of Matrix Analysis Applications 11(1): 134-172.10.1137/0611010
  26. Niemi, A., Babuška, I., Pitkaranta, J. and Demkowicz, L. (2012). Finite element analysis of the Girkmann problem using the modern hp-version and the classical h-version, Procedia Computer Science 28: 123-134.10.1007/s00366-011-0223-0
  27. Paszyński, M. (2016). Fast Solvers for Mesh Based Computations, Taylor & Francis/CRC Press, Boca Raton, FL.10.1201/b19078
  28. Patro, S.K., Selvam, P.R. and Bosch, H. (2013). Adaptiveh-finite element modeling of wind flow around bridges, Engineering Structures 48: 569-577.10.1016/j.engstruct.2012.10.002
  29. Schaefer, R., Łós, M., Sieniek, M., Demkowicz, L. and Paszyński, M. (2015). Quasi-linear computational cost adaptive solvers for three dimensional modeling of heating of a human head induced by cell phone, Journal of Computational Science 11: 163-174.10.1016/j.jocs.2015.09.009
  30. Strug, B., Paszyńska, A., Paszyński, M. and Grabska, E. (2013). Using a graph grammar system in the finite element method, International Journal of Applied Mathematics and Computer Science 23(4): 839-853, DOI: 10.2478/amcs-2013-0063.10.2478/amcs-2013-0063
  31. Zienkiewicz, O.C., Taylor, R. and Z., Z.J. (2013). The Finite Element Method: Its Basis and Fundamentals, Elsevier, Amsterdam.
DOI: https://doi.org/10.1515/amcs-2017-0025 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 351 - 365
Submitted on: Sep 11, 2016
Accepted on: Feb 5, 2017
Published on: Jul 8, 2017
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Hassan Aboueisha, Victor Manuel Calo, Konrad Jopek, Mikhail Moshkov, Anna Paszyńka, Maciej Paszyński, Marcin Skotniczny, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.