Have a personal or library account? Click to login
Assessment of the GPC Control Quality Using Non–Gaussian Statistical Measures Cover

Assessment of the GPC Control Quality Using Non–Gaussian Statistical Measures

Open Access
|Jul 2017

References

  1. Anderson, T.W. and Darling, D.A. (1954). A test of goodness-of-fit, Journal of the American Statistical Association 49(268): 765-769.10.1080/01621459.1954.10501232
  2. Åström, K.J. (1967). Computer control of a paper machine-an application of linear stochastic control theory, IBMJournal 11(4): 389-405.10.1147/rd.114.0389
  3. Axensten, P. (2006). Cauchy CDF, PDF, inverse CDF, parameter fit and random generator, http://www.mathworks.com/matlabcentral/fileexchange/11749-cauchy/.
  4. Borak, S., Misiorek, A. and Weron, R. (2011). Models for heavy-tailed asset returns, in P. Cizek et al. (Eds.), Statistical Tools for Finance and Insurance, 2nd Edn., Springer, New York, NY, pp. 21-56.10.1007/978-3-642-18062-0_1
  5. Camacho, E.F. and Bordons, C. (1999). Model Predictive Control, Springer, London.10.1007/978-1-4471-3398-8
  6. Choudhury, M.A.A.S., Shah, S. and Thornhill, N. (2008). Diagnosis of Process Nonlinearities and Valve Stiction, Springer, Heidelberg.
  7. Clarke, W. and Mohtadi, C. (1989). Properties of generalized predictive control, Automatica 25(5): 859-875.10.1016/0005-1098(89)90053-8
  8. Clarke, W., Mohtadi, C. and Tuffs, P.S. (1987a). Generalized predictive control. I: The basic algorithm, Automatica 23(2): 137-148.10.1016/0005-1098(87)90087-2
  9. Clarke, W., Mohtadi, C. and Tuffs, P.S. (1987b). Generalized predictive control. II: Extensions and interpretations, Automatica 23(2): 149-160.10.1016/0005-1098(87)90088-4
  10. Cramer, H. (1928). On the composition of elementary errors, Scandinavian Actuarial Journal 1928(1): 13-74.10.1080/03461238.1928.10416862
  11. Cross, R. and Iqbal, A. (1995). The Rank Xerox experience: Benchmarking ten years on, in A. Rolstad°as (Ed.), Benchmarking-Theory and Practice, Springer US, Boston, MA, pp. 3-10.10.1007/978-0-387-34847-6_1
  12. Domański, P.D. (2015). Non-Gaussian properties of the real industrial control error in SISO loops, Proceedings of the 19th International Conference on System Theory, Control and Computing, Cheile Gradistei, Romania, pp. 877-882.
  13. Domański, P.D. (2016). Non-Gaussian and persistence measures for control loop quality assessment, Chaos: An Interdisciplinary Journal of Nonlinear Science 26(4): 043105.10.1063/1.494677227131484
  14. Eisenhart, C. (2006). Laws of error. III: Later (non-Gaussian) distributions, in S. Kotz et al. (Eds.), Encyclopedia of Statistical Sciences, Wiley, Hoboken, NJ, Chapter 6.
  15. Harris, T. (1989). Assessment of closed loop performance, Canadian Journal of Chemical Engineering 67(5): 856-861.10.1002/cjce.5450670519
  16. Hill, I.D., Hill, R. and Holder, R.L. (1976). Algorithm AS 99: Fitting Johnson curves by moments, Journal of the Royal Statistical Society C: Applied Statistics 25(2): 180-189.10.2307/2346692
  17. Horch, A. and Isaksson, A.J. (1998). A modified index for control performance assessment, Proceedings of the 1998 American Control Conference, Philadelphia, PA, USA, Vol. 6, pp. 3430-3434.
  18. Hugo, A.J. (2006). Performance assessment of single-loop industrial controllers, Journal of Process Control 16(8): 785-794.10.1016/j.jprocont.2006.03.004
  19. Jelali, M. (2006). An overview of control performance assessment technology and industrial applications 14(5): 441-466.10.1016/j.conengprac.2005.11.005
  20. Jelali, M. (2013). Control Performance Management in Industrial Automation: Assessment, Diagnosis and Improvement of Control Loop Performance, Springer-Verlag, London.10.1007/978-1-4471-4546-2
  21. Koutrouvelis, I.A. (1980). Regression-type estimation of the parameters of stable laws, Journal of the American Statistical Association 75(372): 918-928.10.1080/01621459.1980.10477573
  22. Ławryńczuk, M. (2015). Nonlinear state-space predictive control with on-line linearisation and state estimation, International Journal of Applied Mathematics and Computer Science 25(4): 833-847, DOI: 10.1515/amcs-2015-0060.10.1515/amcs-2015-0060
  23. Lilliefors, H. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown, Journal of the American Statistical Association 62(318): 399-402.10.1080/01621459.1967.10482916
  24. Maciejowski, J.M. (2002). Predictive Control with Constraints, Prentice Hall, Harlow.
  25. Ordys, A., Uduehi, D. and Johnson, M.A. (2007). Process Control Performance Assessment-From Theory to Implementation, Springer, London.10.1007/978-1-84628-624-7
  26. Paulonis, M.A. and Cox, J.W. (2003). A practical approach for large-scale controller performance assessment, diagnosis, and improvement, Journal of Process Control 13(2): 155-168.10.1016/S0959-1524(02)00018-5
  27. Schäfer, J. and Cinar, A. (2004). Multivariable MPC system performance assessment, monitoring, and diagnosis, Journal of Process Control 14(2): 113-129.10.1016/j.jprocont.2003.07.003
  28. Seborg, D.E., Mellichamp, D.A., Edgar, T.F. and Doyle, F.J. (2010). Process Dynamics and Control, Wiley, Hoboken, NJ.
  29. Shapiro, S.S. and Wilk, M.B. (1965). An analysis of variance test for normality (complete samples), Biometrika 52(3-4): 591-611.10.1093/biomet/52.3-4.591
  30. Shinskey, F.G. (2002). Process control: As taught vs. as practiced, Industrial and Engineering Chemistry Research 41(16): 3745-3750.
  31. Smuts, J.F. and Hussey, A. (2011). Requirements for successfully implementing and sustaining advanced control applications, ISA POWID Conference, Research Triangle Park, NC, USA, pp. 89-105.
  32. Spinner, T., Srinivasan, B. and Rengaswamy, R. (2014). Data-based automated diagnosis and iterative retuning of proportional-integral (PI) controllers, Control Engineering Practice 29: 23-41.10.1016/j.conengprac.2014.03.005
  33. Srinivasan, B. and Rengaswamy, R. (2012). Automatic oscillation detection and characterization in closed-loop systems, Control Engineering Practice 20(8): 733-746.10.1016/j.conengprac.2012.02.008
  34. Tatjewski, P. (2007). Advanced Control of Industrial Processes, Structures and Algorithms, Springer, London.
  35. Tatjewski, P. (2010). Supervisory predictive control and on-line set-point optimization, International Journal of Applied Mathematics and Computer Science 20(3): 483-495, DOI: 10.2478/v10006-010-0035-1.10.2478/v10006-010-0035-1
  36. Tatjewski, P. (2014). Disturbance modeling and state estimation for offset-free predictive control with state-space process models, International Journal of Applied Mathematics and Computer Science 24(2): 313-323, DOI: 10.2478/amcs-2014-0023.10.2478/amcs-2014-0023
  37. Thornhill, N.F. and Shah, S.L. (2005). New directions in control loop assessment and diagnosis, Computing & Control Engineering Journal 16(4): 18-22.10.1049/cce:20050404
  38. Yang, X. and Maciejowski, J.M. (2015). Fault tolerant control using Gaussian processes and model predictive control, International Journal of Applied Mathematics and Computer Science 25(1): 133-148, DOI: 10.1515/amcs-2015-0010.10.1515/amcs-2015-0010
  39. Zhuo, H. (2009). Research of performance assessment and monitoring for multivariate model predictive control system, 4th International Conference on Computer Science & Education, Nanning, China, pp. 509-514.
DOI: https://doi.org/10.1515/amcs-2017-0021 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 291 - 307
Submitted on: May 11, 2016
Accepted on: Jan 12, 2017
Published on: Jul 8, 2017
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Paweł D. Domański, Maciej Ławryńczuk, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.