Have a personal or library account? Click to login
Dimension Reduction for Objects Composed of Vector Sets Cover
Open Access
|May 2017

References

  1. Agarwal, S., Awan, A. and Roth, D. (2004). Learning to detect objects in images via a sparse, part-based representation, IEEE Transactions on Pattern Analysis and Machine Intelligence26(11): 1475–1490.10.1109/TPAMI.2004.10815521495
  2. Bååth, R. (2014). Bayesian first aid: A package that implements Bayesian alternatives to the classical *.test functions in R, International R User Conference UseR! 2014, Los Angeles, CA, USA, pp. 86.
  3. Baudat, G. and Anouar, F. (2000). Generalized discriminant analysis, Neural Computation12(1): 2385–2404.10.1162/08997660030001498011032039
  4. Boutsidis, C., Zouzias, A., Mahoney, M.W. and Drineas, P. (2011). Stochastic dimensionality reduction for k-means clustering, CoRRabs/1110.2897, http://arxiv.org/abs/1110.2897.
  5. Bronstein, A.M., Bronstein, M.M. and Ovsjanikov, M. (2010). Feature-based methods in 3D shape analysis, in N. Pears et al. (Eds.), 3D Imaging Analysis and Applications, Springer-Verlag, London, pp. 185–216.
  6. Chai, D., He, X., Zhou, K., Han, J. and Bao, H. (2007). Locality sensitive discriminant analysis, International Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 708–713.
  7. Cunningham, J.P. and Ghahramani, Z. (2015). Linear dimensionality reduction: Survey, insights, and generalizations, Journal of Machine Learning Research16(1): 2859–2900.
  8. Demirci, M.F., Osmanlioglu, Y., Shokoufandeh, A. and Dickinson, S. (2011). Efficient many-to-many feature matching under the l1 norm, Computer Vision and Image Understanding115(7): 967–983.10.1016/j.cviu.2010.12.012
  9. Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society39(1): 1–38.10.1111/j.2517-6161.1977.tb01600.x
  10. Fei-Fei, L., Fergus, R. and Perona, P. (2007). Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories, Journal Computer Vision and Image Understanding106(1): 59–70.10.1016/j.cviu.2005.09.012
  11. Fei-Fei, L. and Perona, P. (2005). A Bayesian hierarchical model for learning natural scene categories, IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, pp. 524–531.
  12. Felzenszwalb, P.F., Girshick, R.B., McAllester, D. and Ramanan, D. (2010). Object detection with discriminatively trained part-based models, IEEE Transactions on Pattern Analysis and Machine Intelligence32(9): 1627–1645.10.1109/TPAMI.2009.16720634557
  13. Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition, Academic Press, San Diego, CA.10.1016/B978-0-08-047865-4.50007-7
  14. Gkalelis, N., Mezaris, V. and Kompatsiaris, I. (2011). Mixture subclass discriminant analysis, IEEE Signal Processing Letters18(5): 319–322.10.1109/LSP.2011.2127474
  15. Górecki, T. and Łuczak, M. (2013). Linear discriminant analysis with a generalization of the Moore–Penrose pseudoinverse, International Journal of Applied Mathematics and Computer Science23(2): 463–471, DOI: 10.2478/amcs-2013-0035.10.2478/amcs-2013-0035
  16. Harandi, M.T., Sanderson, C., Shirazi, S. and Lovell, B.C. (2011). Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching, IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, pp. 2705–2712.
  17. Hastie, T., Buja, A. and Tibshirani, R. (1995). Penalized discriminant analysis, Annals of Statistics23(1): 73–102.10.1214/aos/1176324456
DOI: https://doi.org/10.1515/amcs-2017-0012 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 169 - 180
Submitted on: Mar 4, 2016
Accepted on: Oct 6, 2016
Published on: May 4, 2017
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Marton Szemenyei, Ferenc Vajda, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.