Have a personal or library account? Click to login
A Relation of Dominance for the Bicriterion Bus Routing Problem Cover
By: Jacek Widuch  
Open Access
|May 2017

References

  1. Addor, J.A., Amponsah, S.K., Annan, J. and Sebil, C. (2013). School bus routing: A case study of wood bridge school complex, Sekondi-Takoradi, Ghana, International Journal of Business and Social Research3(12): 26–36.
  2. Arias-Rojas, J.S., Jiménez, J.F. and Montoya-Torres, J.R. (2012). Solving of school bus routing problem by ant colony optimization, Revista EIA9(17): 193–208.
  3. Azevedo, J.A. and Martins, E.Q.V. (1991). An algorithm for the multiobjective shortest path problem on acyclic networks, Investigação Operacional11(1): 52–69.
  4. Bronshtein, E.M. and Vagapova, D.M. (2015). Comparative analysis of application of heuristic and metaheuristic algorithms to the school bus routing problem, Informatics and Its Applications9(2): 56–62.
  5. Brumbaugh-Smith, J. and Shier, D. (1989). An empirical investigation of some bicriterion shortest path algorithms, European Journal of Operational Research43(2): 216–224.10.1016/0377-2217(89)90215-4
  6. Caceres, H., Batta, R. and He, Q. (2014). School bus routing with stochastic demand and duration constraints, Transportation Research Board 93rd Annual Meeting, Washington, DC, USA, pp. 1–23.
  7. Carraway, R.L., Morin, T.L. and Moskowitz, H. (1990). Generalized dynamic programming for multicriteria optimization, European Journal of Operational Research44(1): 95–104.10.1016/0377-2217(90)90318-6
  8. Chalkia, E., Grau, J.M.S., Bekiaris, E., Ayfandopoulou, G., Ferarini, C. and Mitsakis, E. (2014). Routing algorithms for the safe transportation of pupils to school using school buses, Transport Research Arena (TRA) 5th Conference: Transport Solutions from Research to Deployment, Paris, France, pp. 1–10.
  9. Chen, P. and Nie, Y.M. (2013). Bicriterion shortest path problem with a general nonadditive cost, Transportation Research B: Methodological57: 419–435.10.1016/j.trb.2013.05.008
  10. Chen, X., Kong, Y., Dang, L., Hou, Y. and Ye, X. (2015). Exact and metaheuristic approaches for a bi-objective school bus scheduling problem, PLoS ONE10(7): 1–20. DOI:10.1371/journal.pone.0132600.10.1371/journal.pone.0132600
  11. Climaco, J.C. and Martins, E.Q.V. (1982). A bicriterion shortest path algorithm, European Journal of Operational Research11(4): 399–404.10.1016/0377-2217(82)90205-3
  12. Corley, H.W. and Moon, I.D. (1985). Shortest paths in networks with vector weights, Journal of Optimization Theory and Application46(1): 79–86.10.1007/BF00938761
  13. Daellenbach, H.G. and De Kluyver, C.A. (1980). Note on multiple objective dynamic programming, Journal of the Operational Research Society31(7): 591–594.10.1057/jors.1980.114
  14. Dell’Olmo, P., Gentili, M. and Scozzari, A. (2005). On finding dissimilar Pareto-optimal paths, European Journal of Operational Research162(1): 70–82.10.1016/j.ejor.2003.10.033
  15. Díaz-Parra, O., Ruiz-Vanoye, J.A., Buenabad-Arias, A. and Cocón, F. (2012). A vertical transfer algorithm for the school bus routing problem, 4th World Congress on Nature and Biologically Inspired Computing (NaBIC), Mexico City, Mexico, pp. 66–71.
  16. Ehrgott, M. (2000). Multicriteria Optimization, Springer-Verlag, Berlin.10.1007/978-3-662-22199-0
  17. Ellegood, W. A., Campbell, J. F. and North, J. (2015). Continuous approximation models for mixed load school bus routing, Transportation Research B77: 182–198.10.1016/j.trb.2015.03.018
  18. Euchi, J. and Mraihi, R. (2012). The urban bus routing problem in the Tunisian case by the hybrid artificial ant colony algorithm, Swarm and Evolutionary Computation2: 15–24.10.1016/j.swevo.2011.10.002
  19. Garey, M. and Johnson, D. (1990). Computers and Intractibility: A Guide to the Theory of NP-Completeness, W.H. Freeman & Co., New York, NY.
  20. Hansen, P. (1980). Bicriterion path problems, in G. Fandel and T. Gal (Eds.), Multiple Criteria Decision Making: Theory and Application, Springer-Verlag, Berlin, pp. 109–127.10.1007/978-3-642-48782-8_9
  21. Henig, M.I. (1985). The shortest path problem with two objective functions, European Journal of Operational Research25(2): 281–291.10.1016/0377-2217(86)90092-5
  22. Huang, L.C., Guan, W. and Xiong, J. (2014). Routing design optimization of bus joint for passenger transfer centers, in M. Sun and Y. Zhang (Eds.), Renewable Energy and Environmental Technology, Applied Mechanics and Materials, Vol. 448, Trans Tech Publications, Zurich, pp. 4140–4149.
  23. Jungnickel, D. (1999). Graphs, Networks and Algorithms, 2nd Edition, Springer-Verlag, Berlin.10.1007/978-3-662-03822-2
  24. Kang, M., Kim, S.K., Felan, J.T., Choi, H.R. and Cho, M. (2015). Development of a genetic algorithm for the school bus routing problem, International Journal of Software Engineering and Its Applications9(5): 107–126.10.14257/ijseia.2015.9.5.11
  25. Kim, B.I., Kim, S. and Park, J. (2012). A school bus scheduling problem, European Journal of Operational Research218(2): 577–585.10.1016/j.ejor.2011.11.035
  26. Kim, T. and Park, B.J. (2013). Model and algorithm for solving school bus problem, Journal of Emerging Trends in Computing and Information Sciences4(8): 596–600.
DOI: https://doi.org/10.1515/amcs-2017-0010 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 133 - 155
Submitted on: Jan 25, 2016
Accepted on: Nov 10, 2016
Published on: May 4, 2017
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Jacek Widuch, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.