Have a personal or library account? Click to login
Machine–Learning in Optimization of Expensive Black–Box Functions Cover

Machine–Learning in Optimization of Expensive Black–Box Functions

By: Yoel Tenne  
Open Access
|May 2017

References

  1. Arlot, S. (2010). A survey of cross-validation procedures for model selection, Statistics Survey4: 40–79.10.1214/09-SS054
  2. Benoudjit, N., Archambeau, C., Lendasse, A., Lee, J. and Verleysen, M. (2002). Width optimization of the Gaussian Kernels in radial basis function networks, Proceedings of the 10th European Symposium on Artificial Neural Networks, ESANN 2002, Bruges, Belgium, pp. 425–432.
  3. Booker, A.J., Dennis, J.E., Frank, P.D., Serafini, D.B., Torczon, V. and Trosset, M.W. (1999). A rigorous framework for optimization of expensive functions by surrogates, Structural Optimization17(1): 1–13.10.1007/BF01197708
  4. Büche, D., Schraudolph, N.N. and Koumoutsakos, P. (2005). Accelerating evolutionary algorithms with Gaussian process fitness function models, IEEE Transactions on Systems, Man, and Cybernetics C35(2): 183–194.10.1109/TSMCC.2004.841917
  5. Chipperfield, A., Fleming, P., Pohlheim, H. and Fonseca, C. (1994). Genetic Algorithm TOOLBOX for Use with MATLAB, Version 1.2, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield.
  6. Conn, A.R., Gould, N.I.M. and Toint, P.L. (2000). Trust Region Methods, SIAM, Philadelphia, PA.10.1137/1.9780898719857
  7. Conn, A.R., Scheinberg, K. and Toint, P.L. (1998). A derivative free optimization algorithm in practice, Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, USA, Paper No. AIAA-1998-4718.
  8. de Jong, K.A. (2006). Evolutionary Computation: A Unified Approach, MIT Press, Cambridge, MA.10.1145/1274000.1274109
  9. Drela, M. and Youngren, H. (2001). Xfoil 6.9 user primer, Technical report, MIT, Cambridge, MA.
  10. Emmerich, M.T.M., Giotis, A., Özedmir, M., Bäck, T. and Giannakoglou, K.C. (2002). Metamodel-assisted evolution strategies, in J.J. Merelo Guervós (Ed.), 7th International Conference on Parallel Problem Solving from Nature— PPSN VII, Lecture Notes in Computer Science, Vol. 2439, Springer, Berlin, pp. 361–370.10.1007/3-540-45712-7_35
  11. Forrester, A.I.J. and Keane, A.J. (2008). Recent advances in surrogate-based optimization, Progress in Aerospace Science45(1–3): 50–79.10.1016/j.paerosci.2008.11.001
  12. Golberg, M.A., Chen, C.S. and Karur, S.R. (1996). Improved multiquadric approximation for partial differential equations, Engineering Analysis with Boundary Elements18(1): 9–17.10.1016/S0955-7997(96)00033-1
  13. Gorissen, D., De Tommasi, L., Croon, J. and Dhaene, T. (2008). Automatic model type selection with heterogeneous evolution: An application to RF circuit block modeling, Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Hong Kong, China, pp. 989–996.
  14. Handoko, S., Kwoh, C.K. and Ong, Y.-S. (2010). Feasibility structure modeling: An effective chaperon for constrained memetic algorithms, IEEE Transactions on Evolutionary Computation14(5): 740–758.10.1109/TEVC.2009.2039141
  15. Hansen, N. and Ostermeier, A. (2001). Completely derandomized self-adaptation in evolution strategies, Evolutionary Computation9(2): 159–195.10.1162/10636560175019039811382355
  16. Hicks, R.M. and Henne, P.A. (1978). Wing design by numerical optimization, Journal of Aircraft15(7): 407–412.10.2514/3.58379
  17. Jin, Y., Olhofer, M. and Sendhoff, B. (2002). A framework for evolutionary optimization with approximate fitness functions, IEEE Transactions on Evolutionary Computation6(5): 481–494.10.1109/TEVC.2002.800884
  18. Jones, D.R., Schonlau, M. and Welch, W.J. (1998). Efficient global optimization of expensive black-box functions, Journal of Global Optimization13(4): 455–492.10.1023/A:1008306431147
  19. McKay, M.D., Beckman, R.J. and Conover, W.J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics21(2): 239–245.10.1080/00401706.1979.10489755
  20. Molinaro, A.M., Simon, R. and Pfeiffer, R.M. (2005). Prediction error estimation: A comparison of resampling methods, Biometrika21(15): 3301–3307.10.1093/bioinformatics/bti499
  21. Muller, J. and Shoemaker, C.A. (2014). Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems, Journal of Global Optimization60(2): 123–144.10.1007/s10898-014-0184-0
  22. Okabe, T. (2007). Stabilizing parallel computation for evolutionary algorithms on real-world applications, Proceedings of the 7th International Conference on Optimization Techniques and Applications (ICOTA 7), Kobe, Japan, pp. 131–132.
  23. Poloni, C., Giurgevich, A., Onseti, L. and Pediroda, V. (2000). Hybridization of a multi-objective genetic algorithm, a neural network and a classical optimizer for a complex design problem in fluid dynamics, Computer Methods in Applied Mechanics and Engineering186(2–4): 403–420.10.1016/S0045-7825(99)00394-1
  24. Powell, M.J.D. (2001). Radial basis function methods for interpolation of functions of many variables, Proceedings of the 5th Hellenic-European Conference on Computer Mathematics and Its Applications (HERCMA-01), Athens, Greece, pp. 2–24.
  25. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidyanathan, R. and Tucker, K.P. (2005). Surrogate-based analysis and optimization, Progress in Aerospace Science41(1): 1–28.10.1016/j.paerosci.2005.02.001
  26. Rasheed, K., Hirsh, H. and Gelsey, A. (1997). A genetic algorithm for continuous design space search, Artificial Intelligence in Engineering11(3): 295–305.10.1016/S0954-1810(96)00050-7
  27. Ratle, A. (1999). Optimal sampling strategies for learning a fitness model, 1999 IEEE Congress on Evolutionary Computation—CEC 1999, Washington, DC, USA, pp. 2078–2085.
  28. Regis, R.G. (2014). Particle swarm with radial basis function surrogates for expensive black-box optimization, Journal of Computational Science5(1): 12–23.10.1016/j.jocs.2013.07.004
  29. Regis, R.G. and Shoemaker, C.A. (2013). A quasi-multistart framework for global optimization of expensive functions using response surface models, International Journal of Global Optimization56(4): 1719–1753.10.1007/s10898-012-9940-1
  30. Sacks, J., Welch, W.J., Mitchell, T.J. and Wynn, H.P. (1989). Design and analysis of computer experiments, Statistical Science4(4): 409–435.10.1214/ss/1177012413
  31. Sheskin, D.J. (2007). Handbook of Parametric and Nonparametric Statistical Procedures, 4th Edn., Chapman and Hall, Boca Raton, FL.
  32. Smoczek, J. (2013). Evolutionary optimization of interval mathematics-based design of a TSK fuzzy controller for anti-sway crane control, International Journal of Applied Mathematics and Computer Science23(4): 749–759, DOI: 10.2478/amcs-2013-0056.10.2478/amcs-2013-0056
  33. Smołka, M., Schaefer, R., Paszyński, M., Pardo, D. and Álvarez Aramberri, J. (2015). An agent-oriented hierarchic strategy for solving inverse problems, International Journal of Applied Mathematics and Computer Science25(3): 483–498, DOI: 10.1515/amcs-2015-0036.10.1515/amcs-2015-0036
  34. Sobieszczanski-Sobieski, J. and Haftka, R.T. (1997). Multidisciplinary aerospace design optimization: Survey of recent developments, Structural Optimization14(1): 1–23.10.1007/BF01197554
  35. Tenne, Y. (2013). An optimization algorithm employing multiple metamodels and optimizers, International Journal of Automation and Computing10(3): 227–241.10.1007/s11633-013-0716-y
  36. Tenne, Y. (2015). An adaptive-topology ensemble algorithm for engineering optimization problems, Optimization and Engineering16(2): 303–334.10.1007/s11081-014-9260-z
  37. Tenne, Y. and Armfield, S.W. (2008). A versatile surrogate-assisted memetic algorithm for optimization of computationally expensive functions and its engineering applications, in A. Yang et al. (Eds.), Success in Evolutionary Computation, Studies in Computational Intelligence, Vol. 92, Springer-Verlag, Berlin/Heidelberg, pp. 43–72.10.1007/978-3-540-76286-7_3
  38. Tenne, Y. and Goh, C.K. (Eds.) (2010). Computational Intelligence in Expensive Optimization Problems, Springer, Berlin.10.1007/978-3-642-10701-6
  39. Tenne, Y., Izui, K. and Nishiwaki, S. (2010). Handling undefined vectors in expensive optimization problems, in C. Di Chio (Ed.), Proceedings of the 2010 EvoStar Conference, Lecture Notes in Computer Science, Vol. 6024, Springer, Berlin, pp. 582–591.10.1007/978-3-642-12239-2_60
  40. Tenne, Y., Izui, K. and Nishiwaki, S. (2011). A classifier-assisted framework for expensive optimization problems: A knowledge-mining approach, in C.A. Coello-Coello (Ed.), Proceedings of the 5th Learning and Intelligent Optimization Conference (LION 5), Lecture Notes in Computer Science, Vol. 6683, Springer, Berlin/Heidelberg, pp. 161–175.10.1007/978-3-642-25566-3_12
  41. Viana, F.A.C., Haftka, R.T. and Watson, L.T. (2013). Efficient global optimization algorithm assisted by multiple surrogate technique, Journal of Global Optimization56(2): 669–689.10.1007/s10898-012-9892-5
  42. Wortmann, T., Costa, A., Nannicini, G. and Schroepfer, T. (2015). Advantages of surrogate models for architectural design optimization, Artificial Intelligence for Engineering Design, Analysis and Manufacturing29(4): 471–481.10.1017/S0890060415000451
  43. Wu, H.-Y., Yang, S., Liu, F. and Tsai, H.-M. (2003). Comparison of three geometric representations of airfoils for aerodynamic optimization, Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, Orlando, FL, USA, pp. 1–11, Paper no. AIAA 2003-4095.
  44. Wu, X., Kumar, V., Quinlan, R.J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.-H., Steinbach, M., Hand, D.J. and Steinberg, D. (2008). Top 10 algorithms in data mining, Knowledge and Information Systems14(1): 1–37.10.1007/s10115-007-0114-2
DOI: https://doi.org/10.1515/amcs-2017-0008 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 105 - 118
Submitted on: Mar 3, 2016
Accepted on: Oct 11, 2016
Published on: May 4, 2017
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Yoel Tenne, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.