Have a personal or library account? Click to login
Minimum Energy Control of Descriptor Fractional Discrete–Time Linear Systems with Two Different Fractional Orders Cover

Minimum Energy Control of Descriptor Fractional Discrete–Time Linear Systems with Two Different Fractional Orders

Open Access
|May 2017

References

  1. Campbell, S.L., Meyer, C.D., Rose, N.J. (1976). Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients, SIAM Journal on Applied Mathematics31(3): 411–425, DOI: 10.1137/0131035.10.1137/0131035
  2. Caputo, M., Fabrizio, M. (2015). A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications1(2): 1–13, DOI: 10.12785/pfda/010201.
  3. Dai, L. (1989). Singular Control Systems, Lectures Notes in Control and Information Sciences, Vol. 118, Springer-Verlag, Berlin, DOI: 10.1007/BFb0002475.10.1007/BFb0002475
  4. Dodig, M. and Stosic, M. (2009). Singular systems state feedbacks problems, Linear Algebra and Its Applications431(9): 1267–1292, DOI: 10.1016/j.laa.2009.04.024.10.1016/j.laa.2009.04.024
  5. Dzieliński, A., Sierociuk, D. and Sarwas, G. (2009). Ultracapacitor parameters identification based on fractional order model, European Control Conference ECC, Budapest, Hungary, pp. 196–200.
  6. Ferreira, N.M.F., and Machado, J.A.T. (2003). Fractional-order hybrid control of robotic manipulators, 11th International Conference on Advanced Robotics, ICAR, Coimbra, Portugal, pp. 393–398, DOI: 10.1109/ICSMC.1998.725510.10.1109/ICSMC.1998.725510
  7. Guang-Ren, D. (2010). Analysis and Design of Descriptor Linear Systems, Springer, New York, NY, DOI: 10.1007/978-1-4419-6397-0.10.1007/978-1-4419-6397-0
  8. Kaczorek, T, and Klamka, J. (1986). Minimum energy control of 2D linear systems with variable coefficients, International Journal of Control44(3): 645–650.10.1080/00207178608933623
  9. Kaczorek, T. (1998). Vectors and Matrices in Automation and Electrotechnics, WNT, Warsaw.
  10. Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London, DOI: 10.1007/978-1-4471-0221-2.10.1007/978-1-4471-0221-2
  11. Kaczorek, T. (2010). Positive linear systems with different fractional orders, Bulletin of the Polish Academy of Sciences: Technical Sciences58(3): 453–458, DOI: 10.2478/v10175-010-0043-1.10.2478/v10175-010-0043-1
  12. Kaczorek, T. (2011a). Selected Problems in Fractional Systems Theory, Springer-Verlag, Berlin, DOI: 10.1007/978-3-642-20502-6.10.1007/978-3-642-20502-6
  13. Kaczorek, T. (2011b). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions Circuits and Systems58(6): 1203–1210, DOI: 10.1109/TCSI.2010.2096111.10.1109/TCSI.2010.2096111
  14. Kaczorek, T. (2011c). Reduction and decomposition of singular fractional discrete-time linear systems, Acta Mechanica et Automatica5(5): 1–5.
  15. Kaczorek, T. (2011d). Singular fractional discrete-time linear systems, Control and Cybernetics40(3): 1–8.10.1007/978-3-642-20502-6_1
  16. Kaczorek, T. (2013a). Descriptor fractional linear systems with regular pencils, International Journal Applied Mathematics and Computer Science23(2): 309–315, DOI: 10.2478/amcs-2013-0023.10.2478/amcs-2013-0023
  17. Kaczorek, T. (2013b). Solution of the state equations of descriptor fractional discrete-time linear systems with regular pencils, Technika Transportu Szynowego10: 415–422.
  18. Kaczorek, T. (2013c). Singular fractional continuous-time and discrete-time linear systems, Acta Mechanica et Automatica7(1): 26–33, DOI: 10.2478/ama-2013-0005.10.2478/ama-2013-0005
  19. Kaczorek, T. (2014). Minimum energy control of fractional descriptor positive discrete-time linear systems, International Journal of Applied Mathematics and Computer Science24(4): 735–743, DOI: 10.2478/amcs-2014-0054.10.2478/amcs-2014-0054
  20. Klamka, J. (1991).Controllability of Dynamical Systems, Kluwer Academic Press, Dordrecht.
  21. Klamka, J. (2009). Controllability and minimum energy control problem of infinite dimensional fractional discrete-time systems with delays, 1st Asian Conference on Intelligent Information and Database Systems ACIIDS, Dong Hoi, Vietnam, DOI: 10.1109/ACIIDS.2009.53.10.1109/ACIIDS.2009.53
  22. Klamka, J. (2010). Controllability and minimum energy control problem of fractional discrete-time systems, in D. Baleanu et al. (Eds.), New Trends in Nanotechology and Fractional Calculus, Springer-Verlag, New York, NY, pp. 503–509, DOI: 10.1007/978-90-481-3293-5_45.10.1007/978-90-481-3293-5_45
  23. Klamka, J. (2014). Controllability and minimum energy control of linear fractional discrete-time infinite-dimensional systems, 11th IEEE International Conference on Control & Automation ICCA, Taichung, Taiwan, pp. 1210-1214, DOI: 10.1109/ICCA.2014.6871094.10.1109/ICCA.2014.6871094
  24. Miller, K.S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY.
  25. Nishimoto, K. (1984). Fractional Calculus, Decartess Press, Koriama.
  26. Oldham, K.B. and Spanier, J. (1974). The Fractional Calculus, Academic Press, New York, NY.
  27. Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.
  28. Popović, J.K., Pilipović S. and Atanacković, T.M. (2013). Two compartmental fractional derivative model with fractional derivatives of different order, Communications in Nonlinear Science and Numerical Simulation18(10): 2507–2514, DOI: 10.1016/j.cnsns.2013.01.004.10.1016/j.cnsns.2013.01.004
  29. Sajewski, Ł. (2015). Solution of the state equation of descriptor fractional continuous-time linear systems with two different fractional, in R. Szewczyk et al. (Eds.), Progress in Automation, Robotics and Measuring Techniques, Advances in Intelligent Systems and Computing, Vol. 350, Springer, Cham, pp. 233–242, DOI: 10.1007/978-3-319-15796-2_24.10.1007/978-3-319-15796-2_24
  30. Sajewski, Ł. (2016a). Reachability, observability and minimum energy control of fractional positive continuous-time linear systems with two different fractional orders, Multidimensional Systems and Signal Processing27(1): 27–41, DOI: 10.1007/s11045-014-0287-2.10.1007/s11045-014-0287-2
DOI: https://doi.org/10.1515/amcs-2017-0003 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 33 - 41
Submitted on: Apr 19, 2016
Accepted on: Dec 10, 2016
Published on: May 4, 2017
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Łukasz Sajewski, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.