Have a personal or library account? Click to login
Lookahead selective sampling for incomplete data Cover

References

  1. Abdallah, L. and Shimshoni, I. (2013). An ensemble-clustering-based distance metric and its applications, International Journal of Business Intelligence and Data Mining 8(3): 264-287.10.1504/IJBIDM.2013.059052
  2. Abdallah, L. and Shimshoni, I. (2014). Mean shift clustering algorithm for data with missing values, 14th International Conference of DaWaK, Munich, Germany, pp. 426-438.
  3. Abdallah, L. and Shimshoni, I. (2016). k-means over incomplete datasets using mean Euclidean distance, 12th International Conference on Machine Learning and Data Mining, New York, NY, pp. 113-127.
  4. Bai, X., Zhang, M., Wu, Q., Zheng, R., Zhao, H. and Wei, W. (2015). A novel data filling algorithm for incomplete information system based on valued limited tolerance relation, International Journal of Database Theory and Application 8(6): 149-164.10.14257/ijdta.2015.8.6.14
  5. Clark, P.G., Grzymala-Busse, J.W. and Rzasa, W. (2013). Consistency of incomplete data, 2nd International Conference on Data Technologies and Applications, Marrakech, Morocco, pp. 80-87.
  6. Clustering datasets (2008). http://cs.joensuu.fi/sipu/datasets/, University of Eastern Finland, Joensuu.
  7. Dasgupta, S. and Hsu, D. (2008). Hierarchical sampling for active learning, 25th International Conference on Machine Learning, Helsinki, Finland, pp. 208-215.
  8. Dekel, O., Gentile, C. and Sridharan, K. (2012). Selective sampling and active learning from single and multiple teachers, Journal of Machine Learning Research 13(1): 2655-2697.
  9. Donders, A.R.T., van der Heijden, G.J., Stijnen, T. and Moons, K.G. (2006). Review: A gentle introduction to imputation of missing values, Journal of Clinical Epidemiology 59(10): 1087-1091.10.1016/j.jclinepi.2006.01.01416980149
  10. Grzymala-Busse, J. and Hu, M. (2001). A comparison of several approaches to missing attribute values in data mining, in W. Ziarko et al. (Eds.), Rough Sets and Current Trends in Computing, Springer, Berlin/Heidelberg, pp. 378-385.10.1007/3-540-45554-X_46
  11. Grzymala-Busse, J.W. (2006). A rough set approach to data with missing attribute values, in J.F. Peters and Y. Yao (Eds.), Rough Sets and Knowledge Technology, Springer, Berlin/Heidelberg, pp. 58-67.10.1007/11795131_10
  12. Hospedales, T.M., Gong, S. and Xiang, T. (2013). Finding rare classes: Active learning with generative and discriminative models, IEEE Transactions on Knowledge and Data Engineering 25(2): 374-386.10.1109/TKDE.2011.231
  13. Ibrahim, J.G., Chen, M.-H., Lipsitz, S.R. and Herring, A.H. (2005). Missing-data methods for generalized linear models: A comparative review, Journal of the American Statistical Association 100(469): 332-346.10.1198/016214504000001844
  14. Lewis, D. and Gale, W. (1994). A sequential algorithm for training text classifiers, 17th Annual International ACMSIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, pp. 3-12.
  15. Li, H., Shi, Y., Liu, Y., Hauptmann, A.G. and Xiong, Z. (2012). Cross-domain video concept detection: A joint discriminative and generative active learning approach, Expert Systems with Applications 39(15): 12220-12228.10.1016/j.eswa.2012.04.054
  16. Lindenbaum, M., Markovitch, S. and Rusakov, D. (2004). Selective sampling for nearest neighbor classifiers, Machine Learning 54(2): 125-152.10.1023/B:MACH.0000011805.60520.fe
  17. Little, R.J. (1988). Missing-data adjustments in large surveys, Journal of Business & Economic Statistics 6(3): 287-296.10.1080/07350015.1988.10509663
  18. Little, R.J. and Rubin, D.B. (2014). Statistical Analysis with Missing Data, John Wiley & Sons. Hoboken, NJ.
  19. Lughofer, E. (2012). Hybrid active learning for reducing the annotation effort of operators in classification systems, Pattern Recognition 45(2): 884-896.10.1016/j.patcog.2011.08.009
  20. MacQueen, J.B. (1967). Some methods for classification and analysis of multivariate observations, 5th Symposium on Math, Statistics, and Probability, Berkeley, CA, USA, pp. 281-297.
  21. Magnani, M. (2004). Techniques for dealing with missing data in knowledge discovery tasks, Obtido 15(01): 2007.
  22. Nowicki, R.K. (2010). On classification with missing data using rough-neuro-fuzzy systems, International Journal of Applied Mathematics and Computer Science 20(1): 55-67, DOI: 10.2478/v10006-010-0004-8.10.2478/v10006-010-0004-8
  23. Nowicki, R.K., Nowak, B.A. and Woźniak, M. (2016). Application of rough sets in k nearest neighbours algorithm for classification of incomplete samples, in S. Kunifuji et al. (Eds.), Knowledge, Information and Creativity Support Systems, Springer, Berlin/Heidelberg, pp. 243-257.10.1007/978-3-319-27478-2_17
  24. Stefanowski, J. and Tsoukias, A. (2001). Incomplete information tables and rough classification, Computational Intelligence 17(3): 545-566.10.1111/0824-7935.00162
  25. Strehl, A. and Ghosh, J. (2002). Cluster ensembles-A knowledge reuse framework for combining multiple partitions, Journal of Machine Learning Research 3: 583-617.
  26. Tan, M. and Schlimmer, J. (1990). Two case studies in cost-sensitive concept acquisition, 8th National Conference on Artificial Intelligence, Boston, MA, USA, pp. 854-860.
  27. Turney, P. (1995). Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm, Journal of Artificial Intelligence Research 2(1): 369-409.10.1613/jair.120
  28. Xu, Z., Akella, R. and Zhang, Y. (2007). Incorporating diversity and density in active learning for relevance feedback, in G. Amati et al. (Eds.), Advances in Information Retrieval, Springer, Berlin/Heidelberg, pp. 246-257.10.1007/978-3-540-71496-5_24
  29. Zhang, S., Qin, Z., Ling, C. and Sheng, S. (2005). Missing is useful: Missing values in cost-sensitive decision trees, IEEE Transactions on Knowledge and Data Engineering 17(12): 1689-1693.10.1109/TKDE.2005.188
  30. Zhang, Y., Wen, J., Wang, X. and Jiang, Z. (2014). Semi-supervised learning combining co-training with active learning, Expert Systems with Applications 41(5): 2372-2378.10.1016/j.eswa.2013.09.035
DOI: https://doi.org/10.1515/amcs-2016-0062 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 871 - 884
Submitted on: Oct 15, 2015
Accepted on: Jul 19, 2016
Published on: Dec 30, 2016
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Loai Abdallah, Ilan Shimshoni, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.