Have a personal or library account? Click to login
An advance in infinite graph models for the analysis of transportation networks Cover

An advance in infinite graph models for the analysis of transportation networks

Open Access
|Dec 2016

References

  1. Balaji, S. and Revathi, N. (2012). An efficient approach for the optimization version of maximum weighted clique problem, WEAS Transactions on Mathematics 11(9): 773-783.
  2. Barooah, P. and Hespanha, J. (2008). Estimation from relative measurements: Electrical analogy and large graphs, IEEE Transactions on Signal Processing 56(6): 2181-2193.10.1109/TSP.2007.912270
  3. Bauderon, M. (1989). On system of equations defining infinite graphs, in J. van Leeuwen (Ed.), Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, Vol. 344, Springer-Verlag, Berlin/Heidelberg, pp. 54-73.10.1007/3-540-50728-0_35
  4. Caro, M., Fedriani, E. and Tenorio, A. (2015). Design of an efficient algorithm to determine a near-optimal location of parking areas for dangerous goods in the European Road Transport Network, in F. Corman et al. (Eds.), ICCL 2015, Lecture Notes in Computer Science, Vol. 9335, Springer International Publishing, Cham, pp. 617-626.10.1007/978-3-319-24264-4_42
  5. Cayley, A. (1895). The theory of groups, graphical representation, Cambridge Mathematical Papers 10: 26-28.
  6. Cera, M., Diánez, A. and Márquez, A. (2000). The size of a graph without topological complete subgraphs, SIAMJournal on Discrete Mathematics 13(3): 295-301.10.1137/S0895480197315941
  7. Cera, M., Diánez, A. and Márquez, A. (2004). Extremal graphs without topological complete subgraphs, SIAM Journal on Discrete Mathematics 18(2): 288-396.10.1137/S0895480100378677
  8. Diestel, R. (2000). Graph Theory, Springer-Verlag, Berlin/Heidelberg.
  9. Dirac, G. (1960). In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen, Mathematische Nachrichten 22: 61-85.10.1002/mana.19600220107
  10. Dirac, G. and Schuster, S. (1954). A theorem of Kuratowski, Indagationes Mathematicae 16: 343-348.10.1016/S1385-7258(54)50043-0
  11. Dridi, M. and Kacem, I. (2004). A hybrid approach for scheduling transportation networks, International Journal of Applied Mathematics and Computer Science 14(3): 397-409.
  12. Fedriani, E., Mínguez, N. and Mart´ın, A. (2005). Estabilidad de los indicadores topológicos de pobreza, Rect@ 13(1), Record No. 39.
  13. Frucht, R. (1938). Herstellung von Graphen mit vorgegebener abstrakten Gruppe, Compositio Mathematica 6: 239-250.
  14. Grünbaum, B. and Shephard, G. (1987). Tiling and Patterns, Freeman, New York, NY.
  15. Klaučo, M., Blažek, S. and Kvasnica, M. (2016). An optimal path planning problem for heterogeneous multi-vehicle systems, International Journal of Applied Mathematics and Computer Science 26(2): 297-308, DOI: 10.1515/amcs-2016-0021.10.1515/amcs-2016-0021
  16. Kudělka, M., Zehnalová, S., Horák, Z., Krömer, P. and Snášel, V. (2015). Local dependency in networks, International Journal of Applied Mathematics and Computer Science 25(2): 281-293, DOI: 10.1515/amcs-2015-0022.10.1515/amcs-2015-0022
  17. Li, F. (2012). Some results on tenacity of graphs, WEAS Transactions on Mathematics 11(9): 760-772.
  18. Li, F., Ye, Q. and Sheng, B. (2012). Computing rupture degrees of some graphs, WEAS Transactions on Mathematics 11(1): 23-33.
  19. Mader, W. (1967). Homomorphieegenshaften und mittlere Kantendichte von Graphen, Mathematische Annalen 174: 265-268.10.1007/BF01364272
  20. Mader, W. (1998a). 3n − 5 edges do force a subdivision of K5, Combinatorica 18(4): 569-595.10.1007/s004930050041
  21. Mader, W. (1998b). Topological minors in graphs of minimum degree n, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 49: 199-211.10.1090/dimacs/049/14
  22. Milková, E. (2009). Constructing knowledge in graph theory and combinatorial optimization, WSEAS Transactions on Mathematics 8(8): 424-434.
  23. Peng, W., Dong, G., Yang, K. and Su, J. (2013). A random road network model and its effect on topological characteristics of mobile delay-tolerant networks, IEEE Transactions Mobile Computing 13(12): 2706-2718.10.1109/TMC.2013.66
  24. Péter, T. (2012). Modeling nonlinear road traffic networks for junction control, International Journal of Applied Mathematics and Computer Science 22(3): 723-732, DOI: 10.2478/v10006-012-0054-1.10.2478/v10006-012-0054-1
  25. Ruiz, E., Hernández, M. and Fedriani, E. (2008). The development of mining heritage tourism: A systemic approach, in A.D. Ramos and P.S. Jim´enez (Eds.), Tourism Development: Economics, Management and Strategy, Nova Science Publishers, Inc., Hauppauge, NY, pp. 121-143.
  26. Sahimi, M. (1994). Applications of Percolation Theory, Taylor and Francis, London.10.1201/9781482272444
  27. Stauffer, D. and Aharony, A. (1992). Introduction to Percolation Theory, Taylor and Francis, London.
  28. Stein, M. (2011). Extremal infinite graph theory, Discrete Mathematics 311(15): 1472-1496.10.1016/j.disc.2010.12.018
  29. Stein, M. and Zamora, J. (2013). Forcing large complete (topological) minors in infinite graphs, SIAM Journal on Discrete Mathematics 27(2): 697-707.10.1137/100819722
  30. Wagner, K. (1960). Bemerkungen zu Hadwigers Vermutung, Mathematische Annalen 141: 433-451.10.1007/BF01360256
  31. Wierman, J. and Naor, D. (2005). Criteria for evaluation of universal formulas for percolation thresholds, Physical Review E 71(036143).10.1103/PhysRevE.71.03614315903529
  32. Wierman, J., Naor, D. and Cheng, R. (2005). Improved site percolation threshold universal formula for two-dimensional matching lattices, Physical Review E 72(066116).10.1103/PhysRevE.72.06611616486019
  33. Yang, Y., Lin, J. and Dai, Y. (2002). Largest planar graphs and largest maximal planar graphs of diameter two, Journal of Computational and Applied Mathematics 144(1-2): 349-358.10.1016/S0377-0427(01)00572-6
  34. Yousefi-Azaria, H., Khalifeha, M. and Ashrafi, A. (2011). Calculating the edge Wiener and edge Szeged indices of graphs, Journal of Computational and Applied Mathematics 235(16): 4866-4870.10.1016/j.cam.2011.02.019
  35. Zemanian, A. (1988). Infinite electrical networks: A reprise, IEEE Transactions on Circuits and Systems 35(11): 1346-1358.10.1109/31.14459
DOI: https://doi.org/10.1515/amcs-2016-0061 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 855 - 869
Submitted on: Sep 29, 2015
Accepted on: Jul 2, 2016
Published on: Dec 30, 2016
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Martín Cera, Eugenio M. Fedriani, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.